精英家教網 > 高中數學 > 題目詳情
13.在△ABC中,角A,B,C的對邊分別為a,b,c,$cosC=\frac{3}{10}$.
(1)若$\overrightarrow{CA}•\overrightarrow{CB}=\frac{9}{2}$,求△ABC的面積;
(2)設向量$\overrightarrow x=(2sinB,-\sqrt{3})$,$\overrightarrow y=(cos2B,1-2{sin^2}\frac{B}{2})$,且$\overrightarrow x∥\overrightarrow y$,求角B的值.

分析 (1)根據題意,由平面向量的數量積的計算公式,變形化簡可得ab=15,借助三角函數基本關系計算可得sinC的值,由三角形面積公式計算可得答案;
(2)由向量平行的坐標計算公式可得2sinB(1-2sin2$\frac{B}{2}$)-(-$\sqrt{3}$)cos2B=0,化簡可得$sin2B+\sqrt{3}cos2B=0$,進而可得$tan2B=-\sqrt{3}$,即可得B的值,分析B、C的大小關系,可得答案.

解答 解:(1)根據題意,∵$\overrightarrow{CB}•\overrightarrow{CA}=\frac{9}{2}$,∴$abcosC=\frac{9}{2}$,∴ab=15,
又∵$cosC=\frac{3}{10}$,C∈(0,π),$sinC=\frac{{\sqrt{91}}}{10}$.    
所以${S_{△ABC}}=\frac{{3\sqrt{91}}}{4}$.                        
(2)根據題意,∵$\overrightarrow x∥\overrightarrow y$,∴2sinB(1-2sin2$\frac{B}{2}$)-(-$\sqrt{3}$)cos2B=0,
即$2sinB[{1-2{{sin}^2}\frac{B}{2}}]+\sqrt{3}cos2B=0$,
$2sinBcosB+\sqrt{3}cos2B=0$,即$sin2B+\sqrt{3}cos2B=0$,顯然cos2B≠0,
所以$tan2B=-\sqrt{3}$,
所以$2B=\frac{2π}{3}$或$\frac{5π}{3}$,即$B=\frac{π}{3}$或$\frac{5π}{6}$,
因為$cosC=\frac{3}{10}$$<\frac{{\sqrt{3}}}{2}$,所以$C>\frac{π}{6}$,
所以$B=\frac{5π}{6}$(舍去),
即$B=\frac{π}{3}$.

點評 本題靠三角形中的幾何計算,涉及向量的數量積運算以及向量平行的坐標表示,(2)中注意取舍.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

3.以橢圓$\frac{x^2}{25}+\frac{y^2}{9}=1$的中心為原點,左焦點為焦點的拋物線的標準方程是(  )
A.x2=8yB.y2=16xC.x2=-8yD.y2=-16x

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

4.求值:tan210°=( 。
A.$\frac{{\sqrt{3}}}{3}$B.$-\frac{{\sqrt{3}}}{3}$C.$\sqrt{3}$D.$-\sqrt{3}$

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

1.已知等差數列{an}與等差數列{bn}的前n項和分別為Sn和Tn,若$\frac{S_n}{T_n}=\frac{3n-1}{2n+3}$,則$\frac{{{a_{10}}}}{{{b_{10}}}}$=( 。
A.$\frac{3}{2}$B.$\frac{14}{13}$C.$\frac{56}{41}$D.$\frac{29}{23}$

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

8.已知扇形的圓心角是72°,半徑為20cm,則扇形的面積為(  )
A.70πcm2B.70 cm2C.80cm2D.80πcm2

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

18.已知f(x)=3sin(2x+$\frac{π}{4}$)-1.
(1)f(x)的圖象是由y=sin x的圖象如何變換而來?
(2)求f(x)的最小正周期、圖象的對稱軸方程、最大值及其對應的x的值.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

5.已知f(x)為定義在(0,+∞)上的可導函數,且f(x)>xf'(x),則不等式${x^2}f(\frac{1}{x})-f(x)<0$的解集為(  )
A.(0,4)B.(0,3)C.(0,2)D.(0,1)

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

2.已知f(x)=Asin(ωx+φ)(ω>0,0<φ<$\frac{π}{2}$)的圖象如圖所示,則y=f(x)+cos(ωx+$\frac{7π}{12}$)的增區(qū)間是[kπ-$\frac{7}{24}$π,kπ+$\frac{5π}{24}$],k∈Z.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

3.已知函數f(x)=ax3+c,且f′(1)=6,函數在[1,2]上的最大值為20,則c的值為( 。
A.1B.4C.-1D.0

查看答案和解析>>

同步練習冊答案