分析 (1)根據題意,由平面向量的數量積的計算公式,變形化簡可得ab=15,借助三角函數基本關系計算可得sinC的值,由三角形面積公式計算可得答案;
(2)由向量平行的坐標計算公式可得2sinB(1-2sin2$\frac{B}{2}$)-(-$\sqrt{3}$)cos2B=0,化簡可得$sin2B+\sqrt{3}cos2B=0$,進而可得$tan2B=-\sqrt{3}$,即可得B的值,分析B、C的大小關系,可得答案.
解答 解:(1)根據題意,∵$\overrightarrow{CB}•\overrightarrow{CA}=\frac{9}{2}$,∴$abcosC=\frac{9}{2}$,∴ab=15,
又∵$cosC=\frac{3}{10}$,C∈(0,π),$sinC=\frac{{\sqrt{91}}}{10}$.
所以${S_{△ABC}}=\frac{{3\sqrt{91}}}{4}$.
(2)根據題意,∵$\overrightarrow x∥\overrightarrow y$,∴2sinB(1-2sin2$\frac{B}{2}$)-(-$\sqrt{3}$)cos2B=0,
即$2sinB[{1-2{{sin}^2}\frac{B}{2}}]+\sqrt{3}cos2B=0$,
$2sinBcosB+\sqrt{3}cos2B=0$,即$sin2B+\sqrt{3}cos2B=0$,顯然cos2B≠0,
所以$tan2B=-\sqrt{3}$,
所以$2B=\frac{2π}{3}$或$\frac{5π}{3}$,即$B=\frac{π}{3}$或$\frac{5π}{6}$,
因為$cosC=\frac{3}{10}$$<\frac{{\sqrt{3}}}{2}$,所以$C>\frac{π}{6}$,
所以$B=\frac{5π}{6}$(舍去),
即$B=\frac{π}{3}$.
點評 本題靠三角形中的幾何計算,涉及向量的數量積運算以及向量平行的坐標表示,(2)中注意取舍.
科目:高中數學 來源: 題型:選擇題
A. | x2=8y | B. | y2=16x | C. | x2=-8y | D. | y2=-16x |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{{\sqrt{3}}}{3}$ | B. | $-\frac{{\sqrt{3}}}{3}$ | C. | $\sqrt{3}$ | D. | $-\sqrt{3}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{3}{2}$ | B. | $\frac{14}{13}$ | C. | $\frac{56}{41}$ | D. | $\frac{29}{23}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | (0,4) | B. | (0,3) | C. | (0,2) | D. | (0,1) |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com