4.已知$\overrightarrow a=(2,1)$,$\overrightarrow b=(m,-1)$,且$\overrightarrow a⊥(\overrightarrow a-\overrightarrow b)$,則實(shí)數(shù)m=( 。
A.1B.2C.3D.4

分析 $\overrightarrow a⊥(\overrightarrow a-\overrightarrow b)$,可得$\overrightarrow{a}$•($\overrightarrow{a}$-$\overrightarrow$)=0,解得m.

解答 解:$\overrightarrow{a}$-$\overrightarrow$=(2-m,2).
∵$\overrightarrow a⊥(\overrightarrow a-\overrightarrow b)$,∴$\overrightarrow{a}$•($\overrightarrow{a}$-$\overrightarrow$)=2(2-m)+2=0,解得m=3.
故選:C.

點(diǎn)評 本題考查了向量垂直與數(shù)量積的關(guān)系,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知△ABC的外接圓O的半徑為5,AB=6,若$\overrightarrow{CH}$=$\overrightarrow{OA}$+$\overrightarrow{OB}$,則|$\overrightarrow{OH}$|的最小值是( 。
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)f(x)是定義在R上的函數(shù),它的圖象關(guān)于點(diǎn)(1,0)對稱,當(dāng)x≤1時(shí),f(x)=2xe-x(e為自然對數(shù)的底數(shù)),則f(2+3ln2)的值為(  )
A.48ln2B.40ln2C.32ln2D.24ln2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知x,y滿足約束條件$\left\{\begin{array}{l}{x-2≥0}\\{x+y≤6}\\{2x-y≤6}\end{array}\right.$則目標(biāo)函數(shù)z=$\frac{2y}{x+2}$的最大值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.若單位向量$\overrightarrow{e_1},\overrightarrow{e_2}$的夾角為$\frac{π}{3}$,則向量$\overrightarrow{e_1}-2\overrightarrow{e_2}$與向量$\overrightarrow{e_1}$的夾角為$\frac{π}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.等比數(shù)列{an}的前n項(xiàng)和Sn=$\frac{1}{2}•{3^{n+1}}$+c(c為常數(shù)),若λan≤3+S2n恒成立,則實(shí)數(shù)λ的最大值是( 。
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.雙曲線W:$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)一個(gè)焦點(diǎn)為F(2,0),若點(diǎn)F到W的漸近線的距離是1,則W的離心率為( 。
A.$\frac{4}{3}$B.$\frac{2\sqrt{3}}{3}$C.2D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.“=”在基本算法語句中叫( 。
A.賦值號B.等號C.輸入語句D.輸出語句

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.某城市為了滿足市民出行的需要和節(jié)能環(huán)保的要求,在公共場所提供單車共享服務(wù),某部門為了對該城市共享單車進(jìn)行監(jiān)管,隨機(jī)選取了20位市民對共享單車的情況進(jìn)行問卷調(diào)查,并根據(jù)其滿意度評分值(滿分100分)制作的莖葉圖如圖所示:
(1)分別計(jì)算男性打分的平均數(shù)和女性打分的中位數(shù);
(2)從打分在70分以下(不含70分)的市民中抽取3人,求有女性被抽中的概率.

查看答案和解析>>

同步練習(xí)冊答案