A. | 3 | B. | 4 | C. | 5 | D. | 6 |
分析 作出向量示意圖,利用垂徑定理得出CH的長,從而得出OH的最小值.
解答 解:設(shè)AB中點為D,連結(jié)OD,則OD⊥AB,AD=$\frac{1}{2}$AB=3,OA=5,
∴OD=$\sqrt{O{A}^{2}-A{D}^{2}}$=4,$\overrightarrow{OD}$=$\frac{1}{2}$($\overrightarrow{OA}+\overrightarrow{OB}$),
∴CH=|$\overrightarrow{CH}$|=|$\overrightarrow{OA}+\overrightarrow{OB}$|=2OD=8,
又OC=5,
當(dāng)O,C,H三點共線時,OH取得最小值CH-OC=3.
故選A.
點評 本題考查了平面向量在幾何中的應(yīng)用,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
等級 | 優(yōu)秀 | 合格 | 尚待改進 |
頻數(shù) | 15 | x | 5 |
等級 | 優(yōu)秀 | 合格 | 尚待改進 |
頻數(shù) | 15 | 3 | y |
男生 | 女生 | 合計 | |
優(yōu)秀 | |||
非優(yōu)秀 | |||
合計 |
P(K2>k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f′(x)=6-3x2,g′(x)=ex | B. | f′(x)=-3x2,g′(x)=ex-1 | ||
C. | f′(x)=-3x2,g′(x)=ex | D. | f′(x)=6-3x2,g′(x)=ex-1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2$\sqrt{2}$ | B. | 8 | C. | 2-2i | D. | 2+2i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a<b<c | B. | c<a<b | C. | c<a<b | D. | b<a<c |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com