A. | 關于直線x=$\frac{π}{12}$對稱 | B. | 關于直線x=$\frac{5π}{12}$對稱 | ||
C. | 關于點($\frac{π}{12}$,0)對稱 | D. | 關于點($\frac{5π}{12}$,0)對稱 |
分析 根據(jù)三角函數(shù)的性質求出函數(shù)的解析式進行求解即可.
解答 解:∵函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的最小正周期是π,
∴T=$\frac{2π}{ω}$=π,解得ω=2,
即f(x)=sin(2x+φ),
將其圖象向左平移$\frac{π}{6}$個單位后得到y(tǒng)=sin[2(x+$\frac{π}{6}$)+φ]=sin(2x+φ+$\frac{π}{3}$),
若此時函數(shù)關于原點對稱,
則φ+$\frac{π}{3}$=kπ,即φ=-$\frac{π}{3}$+kπ,k∈Z,
∵|φ|<$\frac{π}{2}$,
∴當k=0時,φ=-$\frac{π}{3}$.
即f(x)=sin(2x-$\frac{π}{3}$).
由2x-$\frac{π}{3}$=$\frac{π}{2}$+kπ,
解得x=$\frac{5π}{12}$+$\frac{1}{2}$kπ,k∈Z,
故當k=0時,函數(shù)的對稱軸為x=$\frac{5π}{12}$,
故選:B.
點評 本題主要考查三角函數(shù)解析式的求解以及三角函數(shù)的性質的應用,根據(jù)條件求出函數(shù)的解析式是解決本題的關鍵.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2 | B. | 4 | C. | 6 | D. | 8 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -3 | B. | 3 | C. | ±3 | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -1 | B. | 1 | C. | $\frac{1}{2}$ | D. | -$\frac{1}{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com