在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為,過點(diǎn)的直線的參數(shù)方程為(為參數(shù)),直線與曲線相交于兩點(diǎn).
(1)寫出曲線的直角坐標(biāo)方程和直線的普通方程;
(2)若,求的值.
(1)直角坐標(biāo)方程為,普通方程為;(2).
解析試題分析:(1)由得,極坐標(biāo)方程得,將參數(shù)方程中的參數(shù)消去可得的普通方程;(2)將參數(shù)方程代入直角坐標(biāo)方程化為關(guān)于的一元二次方程,結(jié)合條件利用韋達(dá)定理解出.
試題解析:(1)由得
∴曲線的直角坐標(biāo)方程為
直線的普通方程為
(2)將直線的參數(shù)方程代入曲線的直角坐標(biāo)方程中,
得
設(shè)兩點(diǎn)對應(yīng)的參數(shù)分別為
則有
∵
∴ 即
∴
解之得:或 (舍去)
∴的值為.
考點(diǎn):1.參數(shù)方程;2.極坐標(biāo)方程;3.一元二次方程的解法.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知曲線C1:(為參數(shù)),曲線C2:(t為參數(shù)).
(1)指出C1,C2各是什么曲線,并說明C1與C2公共點(diǎn)的個數(shù);
(2)若把C1,C2上各點(diǎn)的縱坐標(biāo)都壓縮為原來的一半,分別得到曲線.寫出的參數(shù)方程.與公共點(diǎn)的個數(shù)和C公共點(diǎn)的個數(shù)是否相同?說明你的理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
[選修4-4:坐標(biāo)系與參數(shù)方程]
在平面直角坐標(biāo)系中,已知直線的參數(shù)方程(為參數(shù)),直線與拋物線相交于兩點(diǎn),求線段的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知曲線的參數(shù)方程為(為參數(shù)),在同一平面直角坐標(biāo)系中,將曲線上的點(diǎn)按坐標(biāo)變換得到曲線.
(1)求曲線的普通方程;
(2)若點(diǎn)在曲線上,點(diǎn),當(dāng)點(diǎn)在曲線上運(yùn)動時,求中點(diǎn)的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為(為參數(shù)),直線經(jīng)過定點(diǎn)P(3,5),傾斜角為(1)寫出直線的參數(shù)方程和曲線C的標(biāo)準(zhǔn)方程;(2)設(shè)直線與曲線C相交于A、B兩點(diǎn),求的值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系xOy中,圓C的參數(shù)方程為(為參數(shù)),直線l經(jīng)過點(diǎn)P(2,2),傾斜角。(1)寫出圓的標(biāo)準(zhǔn)方程和直線l的參數(shù)方程;
(2)設(shè)l與圓C相交于A、B兩點(diǎn),求的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知直線l1:(t為參數(shù))與直線l2:2x-4y=5相交于點(diǎn)B,又點(diǎn)A(1,2),求|AB|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)直線l過點(diǎn)P(-3,3),且傾斜角為.
(1)寫出直線l的參數(shù)方程;
(2)設(shè)此直線與曲線C: (θ為參數(shù))交于A,B兩點(diǎn),求|PA|·|PB|.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com