17.在銳角△ABC中,a,b,c是角A,B,C的對邊$\sqrt{3}$sinC-cosB=cos(A-C).
(1)求角A的度數(shù);
(2)若a=2$\sqrt{3}$,且△ABC的面積是3$\sqrt{3}$,求b+c.

分析 (1)由cos B+cos (A-C)=$\sqrt{3}$sin C,利用兩角和與差的三角函數(shù)展開可求sin A,進而可求A.
(2)由三角形的面積公式可求bc的值,進而利用余弦定理,平方和公式即可解得b+c的值.

解答 解:(1)因為由已知可得:cos B+cos (A-C)=$\sqrt{3}$sin C,
所以:-cos (A+C)+cos (A-C)=$\sqrt{3}$sin C,
可得:2sin A sin C=$\sqrt{3}$sinC,
故可得:sin A=$\frac{\sqrt{3}}{2}$.
因為△ABC為銳角三角形,
所以A=60°.
(2)∵A=60°,△ABC的面積是3$\sqrt{3}$=$\frac{1}{2}$bcsinA=$\frac{\sqrt{3}}{4}$bc,
∴bc=12,
∵a=2$\sqrt{3}$,
∴由余弦定理a2=b2+c2-2bccosA,可得:12=b2+c2-bc=(b+c)2-3bc=(b+c)2-36,
∴解得:b+c=4$\sqrt{3}$.

點評 本題主要考查了兩角和與差的三角函數(shù),余弦定理及三角形的面積公式在解三角形中的綜合應(yīng)用,考查了轉(zhuǎn)化思想,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

7.F是橢圓$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1的右焦點,A(1,1)為橢圓內(nèi)一定點,P為橢圓上一動點.則|PA|+|PF|的最小值為( 。
A.1B.2C.4-$\sqrt{5}$D.4+$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知正方體ABCD-A1B1C1D1,E是棱CD中點,則直線A1E與直線BC1所成角的余弦值為( 。
A.$\frac{{2\sqrt{2}}}{3}$B.$\frac{1}{3}$C.$\frac{{\sqrt{3}}}{3}$D.0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.橢圓6x2+y2=6的長軸端點坐標為( 。
A.(-1,0),(1,0)B.(-6,0),(6,0)C.$(-\sqrt{6},0),(\sqrt{6},0)$D.$(0,-\sqrt{6}),(0,\sqrt{6})$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{{3}^{x}-a,x<1}\\{π(x-3a)(x-2a),x≥1}\end{array}\right.$,若f(x)恰有2個零點,則實數(shù)a的取值范圍是$[\frac{1}{3},\frac{1}{2})$∪[3,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.若數(shù)列{an}中的項都滿足a2n-1=a2n<a2n+1(n∈N*),則稱{an}為“階梯數(shù)列”.
(1)設(shè)數(shù)列{bn}是“階梯數(shù)列”,且b1=1,b2n+1=9b2n-1(n∈N*),求b2016;
(2)設(shè)數(shù)列{cn}是“階梯數(shù)列”,其前n項和為Sn,求證:{Sn}中存在連續(xù)三項成等差數(shù)列,但不存在連續(xù)四項成等差數(shù)列;
(3)設(shè)數(shù)列{dn}是“階梯數(shù)列”,且d1=1,d2n+1=d2n-1+2(n∈N*),記數(shù)列{$\frac{1}{57xjlft_{n}fzfnzxn_{n+2}}$}的前n項和為Tn,問是否存在實數(shù)t,使得(t-Tn)(t+$\frac{1}{{T}_{n}}$)<0對任意的n∈N*恒成立?若存在,請求出實數(shù)t的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知實數(shù)a≠0,函數(shù)f(x)=$\left\{\begin{array}{l}2x+a,x<1\\-x-2a,x≥1\end{array}$,若f(1-a)=f(1+a),則a的值為( 。
A.-$\frac{3}{2}$B.-$\frac{3}{4}$C.-$\frac{3}{4}$或-$\frac{3}{2}$D.-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.已知函數(shù)f(x)的定義域為D,若對于任意的x1,x2∈D,當x1<x2時,都有f(x1)≤f(x2),則稱函數(shù)f(x)在D上為非減函數(shù).設(shè)f(x)在[0,1]上為非減函數(shù),且滿足以下三個條件:
(1)f(0)=0;(2)f(${\frac{x}{3}}$)=$\frac{1}{2}$f(x);
(3)f(1-x)=1-f(x).
則f(1)+f(${\frac{1}{2}}$)+f(${\frac{1}{3}}$)+f(${\frac{1}{6}}$)+f(${\frac{1}{7}}$)+f(${\frac{1}{8}}$)=$\frac{11}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知函數(shù)f(x)的定義域為[-1,5],部分對應(yīng)值如表,f(x)的導(dǎo)函數(shù)y=f′(x)的圖象如圖所示,下列關(guān)于函數(shù)f(x)的命題:
x-1045
f(x)1221
(1)函數(shù)y=f(x)是周期函數(shù);
(2)函數(shù)f(x)在(0,2)上是減函數(shù);
(3)如果當x∈[-1,t]時,f(x)的最大值是2,那么t的最大值為4;
(4)當1<a<2時,函數(shù)y=f(x)-a有4個零點.
其中真命題的個數(shù)有( 。
A.1個B.2個C.3個D.4個

查看答案和解析>>

同步練習冊答案