A. | 1 | B. | 2 | C. | 4-$\sqrt{5}$ | D. | 4+$\sqrt{5}$ |
分析 由題意方程求出兩個(gè)焦點(diǎn)的坐標(biāo),利用橢圓定義把|PA|+|PF|轉(zhuǎn)化為2a-(|PF′|-|PA|),數(shù)形結(jié)合得答案.
解答 解:由$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1,得a2=4,b2=3,
∴$c=\sqrt{{a}^{2}-^{2}}=1$,則橢圓右焦點(diǎn)F(1,0),
左焦點(diǎn)F′(-1,0),
如圖,由橢圓定義得|PF|+|PF′|=2a=4,則|PF|=4-|PF′|,
∴|PA|+|PF|=|PA|+4-|PF′|=4-(|PF′|-|PA|),
連接F′A并延長交橢圓于點(diǎn)P,此時(shí)|PF′|-|PA|最大,
最大值為|F′A|=$\sqrt{(-1-1)^{2}+(0-1)^{2}}=\sqrt{5}$,
∴|PA|+|PF|的最小值為4-$\sqrt{5}$.
故選:C.
點(diǎn)評 本題考查直線與橢圓位置關(guān)系的應(yīng)用,考查了橢圓中最值的求法,利用橢圓定義轉(zhuǎn)化是關(guān)鍵,是中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{3}$•f($\frac{π}{6}$)>2cos1•f(1) | B. | $\sqrt{3}$f($\frac{π}{6}$)<f($\frac{π}{3}$) | C. | $\sqrt{6}$f($\frac{π}{6}$)>2f($\frac{π}{4}$) | D. | $\sqrt{2}$f($\frac{π}{4}$)>f($\frac{π}{3}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -4 | B. | 4 | C. | -4$\sqrt{3}$ | D. | 4$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $({-1,-\frac{1}{2}}]$ | B. | $[{-\frac{1}{2},0})$ | C. | [1,+∞) | D. | $[{-\frac{1}{2},+∞})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com