14.函數(shù)$f(x)=2x+\sqrt{x-1}$的值域是[2,+∞).

分析 由根式內(nèi)部的代數(shù)式大于等于0求出函數(shù)的定義域,再由函數(shù)的單調(diào)性求得答案.

解答 解:由x-1≥0,得x≥1,
又y=$\sqrt{x-1}$為[1,+∞)上的增函數(shù),y=2x在[1,+∞)上也是增函數(shù),
∴f(x)=2x+$\sqrt{x-1}$是[1,+∞)上的增函數(shù),
則f(x)min=2,∴函數(shù)f(x)=2x+$\sqrt{x-1}$的值域?yàn)閇2,+∞).
故答案為:[2,+∞).

點(diǎn)評(píng) 本題考查函數(shù)的值域,訓(xùn)練了利用函數(shù)的單調(diào)性求函數(shù)的值域,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.將一枚質(zhì)地均勻的硬幣連續(xù)拋擲n次,事件“至少有一次正面向上”的概率為$p({p≥\frac{15}{16}})$,則n的最小值為( 。
A.4B.5C.6D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.設(shè)xy<0,則$\frac{y}{x}$+$\frac{x}{y}$的取值范圍是(-∞,-2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.在平面直角坐標(biāo)系xOy中,曲線C的方程為(x-2)2+y2=4,直線l的方程為x+$\sqrt{3}$y-12=0,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系.
(Ⅰ)分別寫(xiě)出曲線C與直線l的極坐標(biāo)方程;
(Ⅱ)在極坐標(biāo)中,極角為θ(θ∈(0,$\frac{π}{2}$))的射線m與曲線C,直線l分別交于A、B兩點(diǎn)(A異于極點(diǎn)O),求$\frac{|OA|}{|OB|}$的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.如圖,已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)過(guò)點(diǎn)$({1\;,\;\frac{3}{2}})$,兩個(gè)焦點(diǎn)為F1(-1,0)和F2(1,0).圓O的方程為x2+y2=a2
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)過(guò)F1且斜率為k(k>0)的動(dòng)直線l與橢圓C交于A、B兩點(diǎn),與圓O交于P、Q兩點(diǎn)(點(diǎn)A、P在x軸上方),當(dāng)|AF2|,|BF2|,|AB|成等差數(shù)列時(shí),求弦PQ的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知圓C的參數(shù)方程為$\left\{\begin{array}{l}x=cosθ\\ y=sinθ+2\end{array}$(θ為參數(shù)),以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為sinθ+cosθ=$\frac{1}{ρ}$.
(1)求圓C的普通方程和直線l的直角坐標(biāo)方程;
(2)求直線l被圓C所截得的弦長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知直線l:x+$\sqrt{2}y=4\sqrt{2}$與橢圓C:mx2+ny2=1(n>m>0)有且只有一個(gè)公共點(diǎn)$M[{2\sqrt{2},2}]$.
(1)求橢圓C的方程;
(2)設(shè)橢圓C的左、右頂點(diǎn)分別為A,B,O為坐標(biāo)原點(diǎn),動(dòng)點(diǎn)Q滿足QB⊥AB,連接AQ交橢圓于點(diǎn)P,求$\overrightarrow{OQ}•\overrightarrow{OP}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知圓${C_1}:{(x+6)^2}+{(y-5)^2}=4$,圓${C_2}:{(x-2)^2}+{(y-1)^2}=1,M,N$分別為圓C1和C2上的動(dòng)點(diǎn),P為x軸上的動(dòng)點(diǎn),則|PM|+|PN|的最小值為( 。
A.7B.8C.10D.13

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知有下面程序,若程序執(zhí)行后輸出的結(jié)果是11880,則在程序后面的“橫線”處應(yīng)填( 。
A.i≥9B.i=8C.i≥10D.i≥8

查看答案和解析>>

同步練習(xí)冊(cè)答案