5.設(shè)xy<0,則$\frac{y}{x}$+$\frac{x}{y}$的取值范圍是(-∞,-2].

分析 變形利用基本不等式的性質(zhì)即可得出.

解答 解:∵xy<0,∴$\frac{y}{x}$+$\frac{x}{y}$=-$(-\frac{y}{x}-\frac{x}{y})$≤-2$\sqrt{\frac{-y}{x}•\frac{-x}{y}}$=-2,當(dāng)且僅當(dāng)x=-y取等號.
∴$\frac{y}{x}$+$\frac{x}{y}$的取值范圍是(-∞,-2].
故答案為:(-∞,-2].

點評 本題考查了基本不等式的性質(zhì),考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.2016年10月21日,臺風(fēng)“海馬”導(dǎo)致江蘇、福建、廣東3省11市51個縣(市、區(qū))189.9萬人受災(zāi),某調(diào)查小組調(diào)查了受災(zāi)某小區(qū)的100戶居民由于臺風(fēng)造成的經(jīng)濟損失,將收集的數(shù)據(jù)分成[0,2000],(2000,4000],(4000,6000],(6000,8000],(8000,10000]五組,并作出頻率分布直方圖.
(Ⅰ)臺風(fēng)后居委會號召小區(qū)居民為臺風(fēng)重災(zāi)區(qū)捐款,小張調(diào)查的100戶居民捐款情況如表所示,在表格空白處填寫正確數(shù)字,并說明能否在犯錯誤的概率不超過0.05的前提下認(rèn)為捐款數(shù)額超過或不超過500元和自身經(jīng)濟損失是否超過4000元有關(guān)?
(Ⅱ)將上述調(diào)查所得到的頻率視為概率,現(xiàn)在從該地區(qū)大量受災(zāi)居民中,采用隨機抽樣的方法每次抽取1戶居民,抽取3次,記被抽取的3戶居民中自身經(jīng)濟損失超過4000元的人數(shù)為ξ,若每次抽取的結(jié)果是相互獨立的,求ξ的分布列,期望E(ξ)和方差D(ξ).
經(jīng)濟損失不超過4000元經(jīng)濟損失超過4000元總計
捐款超過500元60
捐款不超過500元10
總計
附:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d
P(K2≥k00.0500.0100.001
k03.8416.63510.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.某大學(xué)為調(diào)研學(xué)生在A,B兩家餐廳用餐的滿意度,從在A,B兩家餐廳都用過餐的學(xué)生中隨機抽取了100人,每人分別對這兩家餐廳進行評分,滿分均為60分.整理評分?jǐn)?shù)據(jù),將分?jǐn)?shù)以10為組距分成6組:[0,10),[10,20),[20,30),[30,40),[40,50),[50,60],得到A餐廳分?jǐn)?shù)的頻率分布直方圖,和B餐廳分?jǐn)?shù)的頻數(shù)分布表:
B餐廳分?jǐn)?shù)頻數(shù)分布表
分?jǐn)?shù)區(qū)間頻數(shù)
[0,10)2
[10,20)3
[20,30)5
[30,40)15
[40,50)40
[50,60]35
定義學(xué)生對餐廳評價的“滿意度指數(shù)”如下:
分?jǐn)?shù)[0,30)[30,50)[50,60]
滿意度指數(shù)012
(Ⅰ)在抽樣的100人中,求對A餐廳評價“滿意度指數(shù)”為0的人數(shù);
(Ⅱ)從該校在A,B兩家餐廳都用過餐的學(xué)生中隨機抽取1人進行調(diào)查,試估計其對A餐廳評價的“滿意度指數(shù)”比對B餐廳評價的“滿意度指數(shù)”高的概率;
(Ⅲ)如果從A,B兩家餐廳中選擇一家用餐,你會選擇哪一家?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若集合A={x|x-x2>0},B={x|(x+1)(m-x)>0},則“m>1”是“A∩B≠∅”的( 。
A.充分而不必要條件B.必要而不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知向量$\overrightarrow a=({m,3})$,$\overrightarrow b=({\sqrt{3},1})$,若向量$\overrightarrow a$,$\overrightarrow b$的夾角為30°,則實數(shù)m=$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知數(shù)列{an}的前n項和Sn=2n+1-2,數(shù)列{bn}滿足bn=an+an+1(n∈N*).
(1)求數(shù)列{bn}的通項公式;
(2)若cn=log2an(n∈N*),求數(shù)列{bn•cn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.若2x=10,則x-log25的值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.函數(shù)$f(x)=2x+\sqrt{x-1}$的值域是[2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.若$sin({\frac{π}{3}-α})=\frac{1}{3}$,則$cos({\frac{π}{3}+2α})$=$-\frac{7}{9}$.

查看答案和解析>>

同步練習(xí)冊答案