已知數(shù)列{an}滿足2an+1=an+an+2(n∈N*),且a1=1,a2=
3
2
,則a99=(  )
A、49B、50C、51D、52
考點(diǎn):數(shù)列遞推式
專題:等差數(shù)列與等比數(shù)列
分析:由已知得數(shù)列{an}是首項(xiàng)a1=1,公差d=
3
2
-1=
1
2
的等差數(shù)列,由此能求出a99
解答: 解:∵數(shù)列{an}滿足2an+1=an+an+2(n∈N*),且a1=1,a2=
3
2
,
∴數(shù)列{an}是首項(xiàng)a1=1,公差d=
3
2
-1=
1
2
的等差數(shù)列,
a99=1+98×
1
2
=50.
故選:B.
點(diǎn)評:本題考查數(shù)列的通項(xiàng)公式的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意等差數(shù)列的性質(zhì)的合理運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某外商到一開放區(qū)投資72萬美元建起一座蔬菜加工廠,第一年各種經(jīng)費(fèi)12萬美元,以后每年增加4萬美元,每年銷售蔬菜收入50萬美元
(1)若扣除投資及各種經(jīng)費(fèi),則從第幾年開始獲取純利潤?
(2)若干年后,外商為開發(fā)新項(xiàng)目,有兩種處理方案:①年平均利潤最大時(shí)以48萬美元出售該廠;②純利潤總和最大時(shí),以16萬元出售該廠,問哪種方案最合算?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

判斷函數(shù)f(x)=
ax
x+1
在(-1,+∞)上的單調(diào)性,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱錐P-ABCD的底面ABCD是邊長為l的正方形,側(cè)棱PA=1,PB=PD=
2
,則它的五個(gè)面中,互相垂直的面共有( 。
A、3對B、4對C、5對D、6對

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知2a2=c2+(
2
b+c)2,則∠A=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知平面向量
a
=(1,2),
b
=(-2,x),
a
b

(1)求|2
a
+3
b
|;
(2)若單位向量
c
與向量2
a
-
b
平行,求向量
c
的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正項(xiàng)等差數(shù)列{an}滿足:an+1+an-1=a2n(n≥2),等比數(shù)列{bn}滿足:bn+1bn-1=2bn(n≥2),則log2(a2+b2)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

△ABC中,a、b、c分別是角A、B、C的對邊,且ccosB+bcosC=4acosA.
(1)求cosA的值;
(2)若△ABC的面積為
15
,求
AB
AC
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)滿足:f(m+n)=f(m)f(n),f(1)=3,則
f2(1)+f(2)
f(1)
+
f2(2)+f(4)
f(3)
+
f2(3)+f(6)
f(5)
+…+
f2(n)+f(2n)
f(2n-1)
的值等于
 
.(用含n的式子表示)

查看答案和解析>>

同步練習(xí)冊答案