12.拋物線x2=4y的焦點到準線的距離為(  )
A.1B.2C.4D.8

分析 根據(jù)題意,由拋物線的標準方程可得拋物線的焦點坐標和準線方程,進而可得焦點到準線的距離,即可得答案.

解答 解:根據(jù)題意,拋物線的方程為:x2=4y,
其焦點坐標為(0,1),準線方程y=-1,
則其焦點到準線的距離為2;
故選:B.

點評 本題考查拋物線的幾何性質,關鍵是利用標準方程求出拋物線的焦點坐標以及準線方程.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

2.在平面直角坐標系xOy中,曲線C1的參數(shù)方程為$\left\{\begin{array}{l}x=cosα\\ y=1+sinα\end{array}\right.$(α為參數(shù),α∈R),在以坐標原點為極點,x軸非負半軸為極軸的極坐標系中,曲線${C_2}:ρsin(θ-\frac{π}{4})=\sqrt{2}$.
(Ⅰ)求曲線C1的普通方程與曲線C2的直角坐標方程;
(Ⅱ)若曲線C1和曲線C2相交于A,B兩點,求|AB|的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.矩形OABC的四個頂點坐標依次為$O({0,0}),A({\frac{π}{2},0}),B({\frac{π}{2},1}),C({0,1})$,線段OA,OC及$y=cosx({0<x≤\frac{π}{2}})$的圖象圍成的區(qū)域為Ω,若矩形OABC內任投一點M,則點M落在區(qū)域內Ω的概率為$\frac{2}{π}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.二項式(x+$\frac{1}{2x}$)6的展開式中的常數(shù)項為$\frac{5}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左焦點為F1(-$\sqrt{6}$,0),e=$\frac{\sqrt{2}}{2}$.
(Ⅰ)求橢圓C的方程;
(Ⅱ)如圖,設R(x0,y0)是橢圓C上一動點,由原點O向圓(x-x02+(y-y02=4引兩條切線,分別交橢圓于點P,Q,若直線OP,OQ的斜率存在,并記為k1,k2,求證:k1•k2為定值;
(Ⅲ)在(Ⅱ)的條件下,試問OP2+OQ2是否為定值?若是,求出該值;若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知f(x)=2sin2x+2sinxcosx,則f(x)的最小正周期和一個單調減區(qū)間分別為(  )
A.2π,[$\frac{3π}{8}$,$\frac{7π}{8}$]B.π,[$\frac{3π}{8}$,$\frac{7π}{8}$]C.2π,[-$\frac{π}{8}$,$\frac{3π}{8}$]D.π,[-$\frac{π}{8}$,$\frac{3π}{8}$]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.在三棱柱ABC-A1B1C1中,側面AA1C1C⊥底面ABC,AA1=A1C=AC=AB=BC=2,且點O為AC中點.
(Ⅰ)證明:A1O⊥平面ABC;
(Ⅱ)求三棱錐C1-ABC的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知橢圓C:$\frac{x^2}{a^2}+{y^2}=1(a>1)$,F(xiàn)1,F(xiàn)2分別為左右焦點,在橢圓C上滿足條件$\overrightarrow{A{F_1}}.\overrightarrow{A{F_2}}=0$的點A有且只有兩個
(1)求橢圓C的方程
(2)若過點F2的兩條相互垂直的直線l1與l2,直線l1與曲線y2=4x交于兩點M、N,直線l2與橢圓C交于兩點
P、Q,求四邊形PMQN面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知變量x,y有如下觀察數(shù)據(jù)
x0134
y2.44.54.66.5
若y對x的回歸方程是$\stackrel{∧}{y}$=0.83x+a,則a=( 。
A.2.4B.2.84C.3.67D.3.95

查看答案和解析>>

同步練習冊答案