A. | 1 | B. | $\frac{3}{4}$ | C. | $\frac{2}{3}$ | D. | $\frac{1}{2}$ |
分析 反復(fù)運(yùn)用條件f(x)+f(1-x)=1與f($\frac{x}{3}$)=$\frac{1}{2}$f(x),求得f(0)、f(1),推出x∈[$\frac{1}{3}$,$\frac{1}{2}$]時(shí),f(x)=$\frac{1}{2}$,最后把x=$\frac{3}{8}$代入f($\frac{x}{3}$)=$\frac{1}{2}$f(x)得f($\frac{1}{8}$)=$\frac{1}{2}$f($\frac{3}{8}$),再由f($\frac{3}{8}$)=$\frac{1}{2}$求得結(jié)果
解答 解:把x=0代入f($\frac{x}{3}$)=$\frac{1}{2}$f(x)得f(0)=$\frac{1}{2}$f(0),
∴f(0)=0,
把x=1代入f(x)+f(1-x)=1可知f(1)+f(0)=1,
∴f(1)=1,
∴f($\frac{1}{3}$)=$\frac{1}{2}$f(1)=$\frac{1}{2}$,
把x=$\frac{1}{2}$代入f(x)+f(1-x)=1可得f($\frac{1}{2}$)+f($\frac{1}{2}$)=1,
∴f($\frac{1}{2}$)=$\frac{1}{2}$,
又因?yàn)?≤x1<x2≤1時(shí),f(x1)≤f(x2),
所以x∈[$\frac{1}{3}$,$\frac{1}{2}$]時(shí),f(x)=$\frac{1}{2}$,
把x=$\frac{3}{8}$代入f($\frac{x}{3}$)=$\frac{1}{2}$f(x)得f($\frac{1}{8}$)=$\frac{1}{2}$f($\frac{3}{8}$),
∵x∈[$\frac{1}{3}$,$\frac{1}{2}$]時(shí),f(x)=$\frac{1}{2}$,
∴f($\frac{3}{8}$)=$\frac{1}{2}$,
∴f($\frac{1}{8}$)=$\frac{1}{2}$f($\frac{3}{8}$)=$\frac{1}{4}$,
∴f($\frac{1}{3}$)+f($\frac{1}{8}$)=$\frac{1}{2}$+$\frac{1}{4}$=$\frac{3}{4}$,
故選:B.
點(diǎn)評(píng) 本題主要考查抽象函數(shù)的性質(zhì),解答的關(guān)鍵是反復(fù)運(yùn)用所給的條件,利用式子與式子之間的變換得到結(jié)論.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 12 | B. | 13 | C. | 14 | D. | 15 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -8 | B. | -9 | C. | -6 | D. | -7 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 5 | B. | 9 | C. | 12 | D. | 10 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com