若方程
x2
25-k
+
y2
k-9
=1表示橢圓,則k的取值范圍是( 。
A、(9,17)
B、(9,25)
C、(9,17)∪(17,25)
D、(-∞,9)∪(25,+∞)
考點(diǎn):橢圓的標(biāo)準(zhǔn)方程
專題:圓錐曲線的定義、性質(zhì)與方程
分析:方程
x2
m
+
y2
n
=1
表示橢圓的充要條件是
m>0
n>0
m≠n
,由此根據(jù)已知條件能求出k的取值范圍.
解答: 解:∵方程
x2
25-k
+
y2
k-9
=1表示橢圓,
25-k>0
k-9>0
25-k≠k-9

解得9<k<17,或17<k<25,
∴k的取值范圍是(9,17)∪(17,25).
故選:C.
點(diǎn)評:本題考查方程表示橢圓的充要條件的應(yīng)用,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,要熟練掌握橢圓的性質(zhì).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知P(4,-1),F(xiàn)為拋物線y2=8x的焦點(diǎn),M為此拋物線上的點(diǎn),則|MP|+|MF|的最小值為( 。
A、4B、5C、6D、7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,a1=a(0<a≤1),an+1=
1-
1
an
,an>1
an+
1
2
,an≤1
則使對于任意的n∈N*,an+3=an成立的a有( 。
A、0個(gè)B、1個(gè)C、2個(gè)D、3個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等比數(shù)列{an}中,a7•a12=5,則a8•a9•a10•a11=( 。
A、10B、25C、50D、75

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,若sinA:sinB:sinC=1:
3
:1
,則B大小為( 。
A、30°B、60°
C、90°D、120°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列曲線的離心率是
2
2
的是(  )
A、
x2
2
+
y2
4
=1
B、
x2
4
+
y2
6
=1
C、
x2
2
+
y2
6
=1
D、
x2
4
+
y2
10
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)P(x0,y0)是橢圓
x2
16
+
y2
9
=1
上一動點(diǎn),F(xiàn)1,F(xiàn)2是橢圓的兩個(gè)焦點(diǎn),則
|PF1|
|PF2|
的最大值為( 。
A、3B、4C、5D、16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)M為⊙C:(x+1)2+y2=4上的動點(diǎn),PM是⊙C的切線,且|PM|=1則P點(diǎn)的軌跡方程為( 。
A、(x+1)2+y2=25
B、(x+1)2+y2=5
C、x2+(y+1)2=25
D、(x-1)2+y2=5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x,y∈R
i
,
j
為直角坐標(biāo)平面內(nèi)x,y軸正方向上的單位向量,若向量
a
=(x+5)
i
+y
j
b
=(x-5)
i
+y
j
,|
a
|-|
b
|=8
,求點(diǎn)M(x,y)的軌跡C的方程.

查看答案和解析>>

同步練習(xí)冊答案