如圖,在一條河流的上、下游分別有甲、乙兩家化工廠,其中甲廠每天向河道內(nèi)排放污水2萬(wàn)m3,每天流過(guò)甲廠的河水流量是500萬(wàn)m3(含甲廠排放的污水);乙廠每天向河道內(nèi)排放污水1.4萬(wàn)m3,每天流過(guò)乙廠的河水流量是700萬(wàn)m3(含乙廠排放的污水).由于兩廠之間有一條支流的作用,使得甲廠排放的污水在流到乙廠時(shí),有20%可自然凈化.假設(shè)工廠排放的污水能迅速與河水混合,且甲廠上游及支流均無(wú)污水排放.
(1)求河流在經(jīng)過(guò)乙廠后污水含量的百分比約是多少?(精確到0.01%)
(2)根據(jù)環(huán)保要求,整個(gè)河流中污水含量不能超過(guò)0.2%,為此,甲、乙兩家工廠都必須各自處理一部分污水.已知甲廠處理污水的成本是1000元/萬(wàn)m3,乙廠處理污水的成本是800元/萬(wàn)m3,求甲、乙兩廠每天分別處理多少萬(wàn)m3污水,才能使兩廠處理污水的總費(fèi)用最少?最小總費(fèi)用是多少元?
考點(diǎn):解三角形的實(shí)際應(yīng)用
專(zhuān)題:計(jì)算題,應(yīng)用題,作圖題,函數(shù)的性質(zhì)及應(yīng)用,不等式的解法及應(yīng)用
分析:(1)由題意,
2×80%+1.4
700
=
3
700
≈0.43%;
(2)設(shè)甲、乙兩廠每天分別處理x萬(wàn)m3,y萬(wàn)m3污水,兩廠處理污水的總費(fèi)用為Z元,則
2-x
500
≤0.2%
(2-x)80%+(1.4-y)
700
≤0.2%
,Z=1000x+800y,利用線性規(guī)劃求解.
解答: 解:(1)由題意,
河流在經(jīng)過(guò)乙廠后污水含量的百分比為
2×80%+1.4
700
=
3
700
≈0.43%;
(2)設(shè)甲、乙兩廠每天分別處理x萬(wàn)m3,y萬(wàn)m3污水,兩廠處理污水的總費(fèi)用為Z元,
2-x
500
≤0.2%
(2-x)80%+(1.4-y)
700
≤0.2%
,
1≤x≤2
0.8x+y≥1.6
y≥0

Z=1000x+800y,
作平面區(qū)域如下,

則當(dāng)x=1,y=0.8時(shí),有最小值,
此時(shí)Z=1000+800×0.8=1640元.
故甲、乙兩廠每天分別處理1萬(wàn)m3,0.8萬(wàn)m3污水,才能使兩廠處理污水的總費(fèi)用最少,最小總費(fèi)用是1640元.
點(diǎn)評(píng):本題考查了學(xué)生將實(shí)際問(wèn)題轉(zhuǎn)化為數(shù)學(xué)問(wèn)題的能力,同時(shí)考查了線性規(guī)劃,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

cos(
13
3
π)的值( 。
A、
1
2
B、-
1
2
C、
3
2
D、-
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若拋物線y2=2px(p>0)上一點(diǎn)Q到準(zhǔn)線和拋物線的對(duì)稱(chēng)軸的距離分別為10和6,則此點(diǎn)Q的橫坐標(biāo)為( 。
A、1B、9C、2D、1或9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,直線λ與半徑為1的圓F相切于C.動(dòng)點(diǎn)P到直線λ的距離為d,已知
|PF|
d
=
2
2
,且
2
3
≤d≤
3
2

(Ⅰ)建立適當(dāng)?shù)闹苯亲鴺?biāo)系,求點(diǎn)P運(yùn)動(dòng)形成的軌跡方程;
(Ⅱ)若點(diǎn)G滿(mǎn)足
GF
=2
FC
,點(diǎn)M滿(mǎn)足
MP
=3
PF
且線段MG的垂直平分線經(jīng)過(guò)P,求△PGF的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=sinx-cosx,x∈R
(1)當(dāng)x∈[0,
π
2
]
時(shí),求f(x)的最大值和最小值;
(2)求f(x)的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,漢若塔問(wèn)題是指有3根桿子A、B、C.B桿上有若干碟子,把所有碟子從B桿移到A桿上,每次只能移動(dòng)一個(gè)碟子,大的碟子不能疊在小的上面.把B桿上的5個(gè)碟子全部移到A桿上,最少需要移動(dòng)(  )
A、31次B、32次
C、33次D、35次

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線C:y2=2px(p>0)的準(zhǔn)線為l,焦點(diǎn)為F,圓M的圓心在x軸的正半軸上,圓M與y軸相切,過(guò)原點(diǎn)O作傾斜角為
π
3
的直線n,交直線l于點(diǎn)A,交圓M于不同的兩點(diǎn)O、B,且|AO|=|BO|=2.
(1)求圓M和拋物線C的方程;
(2)若P為拋物線C上的動(dòng)點(diǎn),求
PM
PF
的最小值;
(3)過(guò)直線l上的動(dòng)點(diǎn)Q向圓M作切線,切點(diǎn)分別為S、T,求證:直線ST恒過(guò)一個(gè)定點(diǎn),并求該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,三棱錐D-ABC中,E、F、G分別是AB、BC、CD的中點(diǎn),共有
 
對(duì)線面平行.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在四邊形ABCD中,若
AC
=
AB
+
AD
,則四邊形ABCD的形狀一定是( 。
A、平行四邊形B、菱形
C、矩形D、正方形

查看答案和解析>>

同步練習(xí)冊(cè)答案