(2008•青浦區(qū)一模)cos(α-β)計(jì)算公式可用行列式表示為
.
cosα  -sinα
sinβ    cosβ
.
.
cosα  -sinα
sinβ    cosβ
.
分析:按照二階行列式的定義運(yùn)算法則,將cos(α-β)展開利用二階行列式轉(zhuǎn)化為行列式表示即可.
解答:解:∵cos(α-β)=cosαcosβ+sinαsinβ,
根據(jù)二階行列式的運(yùn)算法則為
.
ac
bd
.
=ad-bc,
.
cosα  -sinα
sinβ    cosβ
.
=cosαcosβ+sinαsinβ.
故答案為:
.
cosα  -sinα
sinβ    cosβ
.
點(diǎn)評(píng):關(guān)鍵是理解二階行列式運(yùn)算法則,考查了兩角和與差的余弦函數(shù)、化歸與轉(zhuǎn)化思想.屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2008•青浦區(qū)一模)在平面直角坐標(biāo)系xoy中,已知圓C的圓心在第二象限,半徑為2
2
且與直線y=x相切于原點(diǎn)O.橢圓
x2
a2
+
y2
9
=1
與圓C的一個(gè)交點(diǎn)到橢圓兩焦點(diǎn)的距離之和為10.
(1)求圓C的方程;
(2)圓C上是否存在點(diǎn)Q,使O、Q關(guān)于直線CF(C為圓心,F(xiàn)為橢圓右焦點(diǎn))對(duì)稱,若存在,請(qǐng)求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•青浦區(qū)一模)設(shè)函數(shù)f(x)=2cos2x+
3
sin2x+a(a
為實(shí)常數(shù))在區(qū)間[0,
π
2
]
上的最小值為-4,那么a的值為
-4
-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•青浦區(qū)一模)把數(shù)列{
1
2n-1
}
的所有數(shù)按照從大到小,左大右小的原則寫成如圖所示的數(shù)表,第k行有2k-1個(gè)數(shù),第k行的第s個(gè)數(shù)(從左數(shù)起)記為A(k,s),則
1
2009
這個(gè)數(shù)可記為A(
10,494
10,494
).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•青浦區(qū)一模)若sinθ=
4
5
,則cos2θ=
-
7
25
-
7
25

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•青浦區(qū)一模)|
a
|=1,|
b
|=2,
a
b
=
3
,則
a
b
夾角的大小為
30°
30°

查看答案和解析>>

同步練習(xí)冊(cè)答案