【題目】已知函數(shù).
(1)若,求函數(shù)的極值和單調區(qū)間;
(2)若在區(qū)間上至少存在一點,使得成立,求實數(shù)的取值范圍.
【答案】(1)的極小值為,的單調遞增區(qū)間為,單調遞減區(qū)間為;(2).
【解析】
試題分析:(1)當,由此求得時,有極小值為,的單調遞增區(qū)間為,單調遞減區(qū)間為;(2),令,得到,若在區(qū)間上存在一點,使得成立,即在區(qū)間上的最小值小于.對分成,,三類進行分類討論,由此求得實數(shù)的取值范圍.
試題解析:
(1)當,令,得,
又的定義域為,由得,由,得,
所以時,有極小值為1,
的單調遞增區(qū)間為,單調遞減區(qū)間為................5分
(2),且,令,得到,若在區(qū)間上存在一點,使得成立,即在區(qū)間上的最小值小于0.
當,即時,恒成立,即在區(qū)間上單調遞減,
故在區(qū)間上的最小值為,
由,得,即............................8分
當,即時,
①,則對成立,所以在區(qū)間上單調遞減,
則在區(qū)間上的最小值為,
顯然,在區(qū)間上的最小值小于0不成立,
②若,即時,則有
0 | |||
極小值 |
所以在區(qū)間上的最小值,
由得,解得,即,
綜上,由①②可知:............................12分
科目:高中數(shù)學 來源: 題型:
【題目】設為實數(shù),函數(shù).
(1)求證: 不是上的奇函數(shù);
(2)若是上的單調函數(shù),求實數(shù)的值;
(3)若函數(shù)在區(qū)間上恰有3個不同的零點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)的定義域為為的導函數(shù).
(1)求方程的解集;
(2)求函數(shù)的最大值與最小值;
(3)若函數(shù)在定義域上恰有2個極值點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一項針對人們休閑方式的調查結果如下:受調查對象總計124人,其中女性70人,男性54人.女性中有43人主要的休閑方式是看電視,另外27人主要的休閑方式是運動;男性中有21人主要的休閑方式是看電視,另外33人主要的休閑方式是運動.
(1)根據(jù)以上數(shù)據(jù)建立一個的列聯(lián)表;
(2)根據(jù)下列提供的獨立檢驗臨界值表,你最多能有多少把握認為性別與休閑方式有關系?
獨立檢驗臨界值表:
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
參考公式: .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對綿陽南山實驗學校的500名教師的年齡進行統(tǒng)計分析,年齡的頻率分布直方圖如圖所示,規(guī)定年齡在內的為青年教師,內的為中年教師,內的為老年教師.
(1)求年齡,內的教師人數(shù);
(2)現(xiàn)用分層抽樣的方法從中、青年中抽取18人進行同課異構課堂展示,求抽到年齡在內的人數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某學校用“10分制”調查本校學生對教師教學的滿意度,現(xiàn)從學生中隨機抽取16名,以下莖葉圖記錄了他們對該校教師教學滿意度的分數(shù)(以小數(shù)點前的一位數(shù)字為莖,小數(shù)點后的一位數(shù)字為葉):
(Ⅰ)若教學滿意度不低于9.5分,則稱該生對教師的教學滿意度為“極滿意”.求從這16人中隨機選取3人,至少有1人是“極滿意”的概率;
(Ⅱ)以這16人的樣本數(shù)據(jù)來估計整個學校的總體數(shù)據(jù),若從該校所有學生中(學生人數(shù)很多)任選3人,記表示抽到“極滿意”的人數(shù),求的分布列及數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓: 的短軸長為2,且函數(shù)的圖象與橢圓僅有兩個公共點,過原點的直線與橢圓交于兩點.
(1)求橢圓的標準方程;
(2)點為線段的中垂線與橢圓的一個公共點,求面積的最小值,并求此時直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知(),,且直線與曲線相切.
(1)求的值;
(2)若對內的一切實數(shù),不等式恒成立,求實數(shù)的取值范圍;
(3)求證: ().
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com