A. | a>e2 | B. | a<e2 | C. | a>-2e | D. | a<-2e |
分析 問題轉(zhuǎn)化為a<ex(x2-3)max成立,根據(jù)函數(shù)的單調(diào)性求出函數(shù)的最大值,求出a的范圍即可.
解答 解:若存在x∈[-2,2],使得f(x)>g(x)成立,
即存在x∈[-2,2],使得a<ex(x2-3)max成立,
令h(x)=ex(x2-3),x∈[-2,2],
則h′(x)=ex(x+3)(x-1),
令h′(x)>0,解得:1<x≤2,
令h′(x)<0,解得:-2≤x<1,
故h(x)在[-2,1)遞減,在(1,2]遞增,
而h(-2)=$\frac{1}{{e}^{2}}$,h(2)=e2,
故a<e2,
故選:B.
點評 本題考查了函數(shù)的單調(diào)性、最值問題,考查導數(shù)的應(yīng)用,是一道中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{x^2}{2}-{y^2}$=1(x≠±$\sqrt{2}$) | B. | $\frac{x^2}{2}-{y^2}$=1 | C. | $\frac{x^2}{2}+{y^2}$=1(y≠0) | D. | $\frac{y^2}{2}+{x^2}$=1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
正常 | 非正常 | 合計 | |
男 | 30 | 20 | 50 |
女 | 50 | 10 | 60 |
合計 | 80 | 30 | 110 |
P(K2≥k0) | 0.100 | 0.05 | 0.025 | 0.010 | 0.001 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{y^2}{2}+{x^2}$=1 | B. | $\frac{y^2}{2}+{x^2}$=1(x≠0) | C. | $\frac{y^2}{2}-{x^2}$=1 | D. | $\frac{y^2}{2}+{x^2}$=1(y≠0) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 若m∥n,m⊥α,則n⊥α | B. | 若m∥α,m∥β,則α∥β | C. | 若m∥α,n∥α,則m∥n | D. | 若m∥α,α⊥β,則m⊥β |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com