分析 (1)欲求a的值的大小,根據(jù)所給的切線方程,只須求出切線斜率即可,故先利用導(dǎo)數(shù)求出在x=0處的導(dǎo)函數(shù)值,再結(jié)合導(dǎo)數(shù)的幾何意義即可求出切線的斜率進(jìn)而得切線方程,最后與所給的方程比較即得a的值.
(2)欲求函數(shù)f(x)單調(diào)區(qū)間,先確定函數(shù)的定義域然后求導(dǎo)數(shù)fˊ(x),在函數(shù)的定義域內(nèi)解不等式fˊ(x)>0和fˊ(x)<0即得.
解答 解:(1)f'(x)=ex[x2-(1+a)x+1]+ex(2x-1-a)=ex[x2+(1-a)x-a]=ex(x-a)(x+1),
由曲線y=f(x)在點(diǎn)P(0,f(0))處的切線與直線平行y=x+4,
得f'(0)=1,即e0(0-a)(0+1)=1,解得,a=-1.
(2)∵ex>0,令f'(x)=0,得x=a或x=-1.∴①若a=-1,f'(x)≥0,f(x)是增函數(shù),增區(qū)間為(-∞,+∞).(7分)
②若a<-1,當(dāng)x<a或x>-1時(shí),f'(x)>0,f(x)是增函數(shù),增區(qū)間為(-∞,a),(-1,+∞).
當(dāng)a<x<-1時(shí),f'(x)<0,f(x)是減函數(shù),減區(qū)間為(a,-1).(10分)
③若a>-1,當(dāng)x<-1或x>a時(shí),f'(x)>0,f(x)是增函數(shù),增區(qū)間為(-∞,-1),(a,+∞).
當(dāng)-1<x<a時(shí),f'(x)<0,f(x)是減函數(shù),減區(qū)間為(-1,a).(13分)
點(diǎn)評(píng) 本小題主要考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、導(dǎo)數(shù)的幾何意義、利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程等基礎(chǔ)知識(shí),考查運(yùn)算求解能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -2 | B. | -3 | C. | -4 | D. | -5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [6,+∞) | B. | (-∞,-6]∪[6,+∞) | C. | (6,+∞) | D. | (-6,6) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 5 | B. | 4 | C. | 3 | D. | 2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com