10.在極坐標(biāo)系中,點(diǎn)A(2,$\frac{π}{2}$)到直線(xiàn)ρcos($θ+\frac{π}{4}$)=$\sqrt{2}$的距離為2$\sqrt{2}$.

分析 先求出A(0,2),直線(xiàn)為x-y-2=0,由此利用點(diǎn)到直線(xiàn)的距離公式能求出點(diǎn)A(2,$\frac{π}{2}$)到直線(xiàn)ρcos($θ+\frac{π}{4}$)=$\sqrt{2}$的距離.

解答 解:在極坐標(biāo)系中,點(diǎn)A(2,$\frac{π}{2}$),
∴在平面直角坐標(biāo)系中,A(2cos$\frac{π}{2}$,2sin$\frac{π}{2}$),即A(0,2),
∵ρcos($θ+\frac{π}{4}$)=ρ(cos$θcos\frac{π}{4}$-sin$θsin\frac{π}{4}$)=$\frac{\sqrt{2}}{2}ρ$cosθ-$\frac{\sqrt{2}}{2}ρ$sinθ=$\sqrt{2}$,
∴$\frac{ρ}{2}cosθ-\frac{ρ}{2}sinθ$=1,
∴ρcosθ=x,ρsinθ=y,
∴直線(xiàn)為x-y-2=0,
點(diǎn)A(0,2)到直線(xiàn)x-y-2=0的距離:d=$\frac{|0-2-2|}{\sqrt{2}}$=2$\sqrt{2}$,
∴點(diǎn)A(2,$\frac{π}{2}$)到直線(xiàn)ρcos($θ+\frac{π}{4}$)=$\sqrt{2}$的距離為2$\sqrt{2}$.
故答案為:2$\sqrt{2}$.

點(diǎn)評(píng) 本題考查點(diǎn)到直線(xiàn)的距離的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意極坐標(biāo)和直角坐標(biāo)的相互轉(zhuǎn)化.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.在直三棱錐ABC-A1B1C1中,AA1=AB=AC=2,E,F(xiàn)分別是CC1,BC的中點(diǎn),AE⊥A1B1,D為棱A1B1上的點(diǎn).
(1)證明:DF⊥AE;
(2)是否存在一點(diǎn)D,使得平面DEF與平面ABC夾角的余弦值為$\frac{\sqrt{14}}{14}$?若存在,說(shuō)明點(diǎn)D的位置,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知函數(shù)f(x)=3ax2-2(a-b+1)x-b,a,b∈R,x∈[-1,1].
(1)若a=1,b=4.試求函數(shù)f(x)的值域;
(2)記|f(x)|的最大值為M,對(duì)任意的|a|≤1,|b|≤1,求M的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知$|\overrightarrow a|=1$,$|\overrightarrow b|=\sqrt{3}$,$|\overrightarrow a-\overrightarrow b|=1$,則$\overrightarrow a$與$\overrightarrow b$的夾角為$\frac{π}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知函數(shù)f(x)=e1-xcosx,a∈R.
(Ⅰ)判斷函數(shù)f(x)在$(0,\frac{π}{2})$上的單調(diào)性;
(Ⅱ)證明:?x∈[-1,$\frac{1}{2}$],總有f(-x-1)+2f′(x)•cos(x+1)>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.如圖,AB是圓O的直徑,C,F(xiàn)是圓O上的點(diǎn),CA平分∠BAF,過(guò)C點(diǎn)作圓O的切線(xiàn)交AF的延長(zhǎng)線(xiàn)于D點(diǎn),CM⊥AB,垂足為M.
(1)求證:CD⊥AF;
(2)若CD=$\sqrt{2}$,AM=2,求BM的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.如圖所示,點(diǎn)P是圓O直徑AB延長(zhǎng)線(xiàn)上的一點(diǎn),PC切圓O于點(diǎn)C,直線(xiàn)PQ平分∠APC,分別交AC、BC于點(diǎn)M、N.求證:
(1)△CMN為等腰三角形;
(2)PB•CM=PC•BN.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.在一次飛機(jī)航程中調(diào)查男女乘客的暈機(jī)情況,男女乘客暈機(jī)與不暈機(jī)的人數(shù)如圖所示. 
(1)填寫(xiě)2×2列聯(lián)表
(2)判斷是否有97.5%的把握認(rèn)為暈機(jī)與性別有關(guān)?說(shuō)明你的理由:
參考公式:k2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$(下面的臨界值表供參考)
P(K2≥k)0.400.250.150.100.050.0250.0100.0050.001
k0.7081.3232.0722.7063.8415.0246.6357.87910.828
(1)根據(jù)所給的二維條形圖得到列聯(lián)表,
暈機(jī)不暈機(jī)合計(jì)
102030
107080
合計(jì)2090100

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知函數(shù)f(x)=sin(x+$\frac{π}{6}}$),其中x∈[-$\frac{π}{3}$,α],若f(x)的值域是[-$\frac{1}{2}$,1],則a的取值范圍是[$\frac{π}{3}$,π].

查看答案和解析>>

同步練習(xí)冊(cè)答案