已知△ABC中,A(1,3),AB、AC邊上的中線所在直線方程分別為x-2y+1=0和y-1=0,求△ABC各邊所在直線方程.
分析:B點應(yīng)滿足的兩個條件是:①B在直線y-1=0上;②BA的中點D在直線x-2y+1=0上.由①可設(shè)B(xB,1),進而由②確定xB值,得到B點坐標;同理設(shè)出點C的縱坐標,根據(jù)中點坐標公式和C在x-2y+1=0上可求出C點坐標,然后利用兩點式分別求出三邊所在的直線方程即可.
解答:解:設(shè)B(xB,1)則AB的中點D(
xB+1
2
,2)

∵D在中線CD:x-2y+1=0上
xB+1
2
-2•2+1=0

解得xB=5,故B(5,1).
同樣,因點C在直線x-2y+1=0上,可以設(shè)C為(2yC-1,yC),
根據(jù)
yc+3
2
=1,解出yC=-1,
所以C(-3,-1).
根據(jù)兩點式,得直線AB的方程為y-3=
3-1
1-5
(x-1);
直線BC的方程為y-1=
-1-1
-3-5
(x-5);
直線AC的方程為y-3=
-1-3
-3-1
(x-1)
化簡得△ABC中直線AB:x+2y-7=0,
直線BC:x-4y-1=0,
直線AC:x-y+2=0.
點評:此題是一道綜合題,要求學生靈活運用中點坐標公式,掌握點在直線上則點的坐標滿足直線方程化簡求值,會根據(jù)條件寫出直線的一般式方程.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知△ABC中,A=60°,a=
15
,c=4,那么sinC=
2
5
5
2
5
5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知△ABC中,A(4,2),B(1,8),C(-1,8).
(1)求AB邊上的高所在的直線方程;
(2)直線l∥AB,與AC,BC依次交于E,F(xiàn),S△CEF:S△ABC=1:4.求l所在的直線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知△ABC中,a=2,b=1,C=60°,則邊長c=
3
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知△ABC中,a=2
3
,若
m
=(-cos
A
2
,sin
A
2
)
,
n
=(cos
A
2
,sin
A
2
)
滿足
m
n
=
1
2
.(1)若△ABC的面積S=
3
,求b+c的值.(2)求b+c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知△ABC中,A,B,C的對邊分別為a,b,c,且
(AB)2
=
AB
AC
+
BA
BC
+
CA
CB

(Ⅰ)判斷△ABC的形狀,并求t=sinA+sinB的取值范圍;
(Ⅱ)若不等式a2(b+c)+b2(c+a)+c2(a+b)≥kabc,對任意的滿足題意的a,b,c都成立,求k的取值范圍.

查看答案和解析>>

同步練習冊答案