15.設(shè)偶函數(shù)y=2sin(ωx+φ)(ω>0,0<φ<π)的圖象與直線y=2的某兩個交點的橫坐標(biāo)分別為x1,x2,若|x2-x1||的最小值為π,則該函數(shù)在下列哪個區(qū)間上單調(diào)遞增( 。
A.(0,$\frac{π}{2}$)B.(-$\frac{π}{4}$,$\frac{π}{4}$)C.(-$\frac{π}{2}$,-$\frac{π}{4}$)D.($\frac{π}{4}$,$\frac{3π}{4}$)

分析 根據(jù)y=2sin(ωx+φ)(ω>0,0<φ<π)是偶函數(shù),可得φ=$\frac{π}{2}$,圖象與直線y=2的某兩個交點的橫坐標(biāo)分別為x1,x2,若|x2-x1||的最小值為π,可知周期為π,求出ω,可得函數(shù)y的解析式,即可求出單調(diào)遞增區(qū)間,可得答案.

解答 解:由題意y=2sin(ωx+φ)(ω>0,0<φ<π)是偶函數(shù),可得φ=$\frac{π}{2}$,即y=2cosωx.
圖象與直線y=2的某兩個交點的橫坐標(biāo)分別為x1,x2,若|x2-x1|的最小值為π,
∴函數(shù)周期T=π=$\frac{2π}{ω}$,
解得ω=2.
那么函數(shù)y=2cos2x.
令-π+2kπ≤2x≤2kπ,k∈Z,
得:$-\frac{π}{2}+kπ≤x≤kπ$.
那么:函數(shù)y在區(qū)間(-$\frac{π}{2}$,-$\frac{π}{4}$)上是增函數(shù).
故選C.

點評 本題主要考查對三角函數(shù)的化簡能力和三角函數(shù)的圖象和性質(zhì)的運用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.化簡:$\frac{1-cosθ-sinθ}{1+cosθ-sinθ}$=-tan$\frac{θ}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知實數(shù)2,m,8構(gòu)成一個等差數(shù)列,則圓錐曲線$\frac{{x}^{2}}{m}$+y2=1的焦距為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.一個幾何體的三視圖如圖所示,則該幾何體的表面積為( 。
A.$\frac{3+\sqrt{3}+2\sqrt{2}}{2}$B.$\frac{1+\sqrt{3}+\sqrt{2}}{2}$C.$\frac{1+\sqrt{3}+2\sqrt{2}}{2}$D.$\frac{3}{2}$+2$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=$\frac{1+x}{e^x}$,g(x)=1-ax2
(1)若函數(shù)f(x)和g(x)的圖象在x=1處的切線平行,求a的值;
(2)當(dāng)x∈[0,1]時,不等式f(x)≤g(x)恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,在四棱錐P-ABCD中,底面ABCD是平行四邊形,∠BCD=135°,側(cè)面PAB⊥底面ABCD,∠BAP=90°,AB=AC=PA=2,E,F(xiàn)分別為BC,AD的中點,點M在線段PD上.
(Ⅰ)求證:EF⊥平面PAC;
(Ⅱ)當(dāng)二面角M-EF-D的大小為60°時,求$\frac{PM}{PD}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知點A(0,2),拋物線C:y2=mx(m>0)的焦點為F,射線FA與拋物線C相交于點M,與其準(zhǔn)線相交于點N,若|FM|:|MN|=1:2,則△OFN的面積為( 。
A.$8\sqrt{3}$B.$4\sqrt{3}$C.$\frac{8\sqrt{3}}{3}$D.$\frac{4\sqrt{3}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.若函數(shù)y=2x3+1與y=3x2-b的圖象在一個公共點處的切線相同,則實數(shù)b=0或-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在直角坐標(biāo)系xOy中,曲線C1的方程為$\frac{x^2}{9}+{y^2}=1$.以坐標(biāo)原點為極點,以x軸的正半軸為極軸,建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ2-8ρsinθ+15=0.
(Ⅰ)寫出C1的參數(shù)方程和C2的直角坐標(biāo)方程;
(Ⅱ)設(shè)點P在C1上,點Q在C2上,求|PQ|的最大值.

查看答案和解析>>

同步練習(xí)冊答案