【題目】橢圓與軸,軸的正半軸分別交于兩點,原點到直線的距離為,該橢圓的離心率為.
(1)求橢圓的方程;
(2)過點的直線與橢圓交于兩個不同的點,求線段的垂直平分線在軸上截距的取值范圍.
【答案】(1);(2).
【解析】
試題分析:(1)由題意直線方程為,即,根據(jù)題設條件列出方程組,求解的值,即可求得橢圓的方程;(2)當直線斜率不存在時,線段的垂直平分線的縱截距為0;當直線斜率存在時,設直線的方程為,代入橢圓的方程,由和韋達定理,得,利用垂直平分線的方程,即可求得線段的垂直平分線在軸上截距的取值范圍.
試題解析:(1)由題意,直線方程為,即,
由,得故橢圓的方程為;
(2)當直線斜率不存在時,線段的垂直平分線的縱截距為0;
當直線斜率存在時,設直線的方程為,
代入得………………(*).
由,得,
設,,的中點,
根據(jù)(*)及韋達定理,有,,
于是線段的垂直平分線的方程為,
令,得中垂線的縱截距,由,得,
綜上,縱截距的取值范圍為.
科目:高中數(shù)學 來源: 題型:
【題目】已知命題:直線與圓有兩個交點;命題:.
(1)若為真命題,求實數(shù)的取值范圍;
(2)若為真命題,為假命題,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一對父子參加一個親子摸獎游戲,其規(guī)則如下:父親在裝有紅色、白色球各兩個的甲袋子里隨機取兩個球,兒子在裝有紅色、白色、黑色球各一個的乙袋子里隨機取一個球,父子倆取球互相獨立,兩人各摸球一次合在一起稱為一次摸獎,他們?nèi)〕龅娜齻球的顏色情況與他們獲得的積分對應如下表:
所取球的情況 | 三個球均為紅色 | 三個球均為不同色 | 恰有兩球為紅色 | 其他情況 |
所獲得的積分 | 180 | 90 | 60 | 0 |
(1)求一次摸獎中,所取的三個球中恰有兩個是紅球的概率;
(2)設一次摸獎中,他們所獲得的積分為,求的分布列及均值(數(shù)學期望);
(3)按照以上規(guī)則重復摸獎三次,求至少有兩次獲得積分為60的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知是定義在上的奇函數(shù),當時,(其中,是自然對數(shù)的底數(shù),=2.71828…).
(Ⅰ)求的值;
(Ⅱ)若時,方程有實數(shù)根,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】甲乙二人用4張撲克牌(分別是紅桃2,紅桃3,紅桃4,方片4)完游戲,他們將撲克牌洗勻后,背面朝上放在桌面上,甲先抽,乙后抽,抽出的牌不放回,各抽一張.
(1)設分別表示甲、乙抽到的牌的數(shù)字,寫出甲乙二人抽到的牌的所有情況;
(2)若甲抽到紅桃3,則乙抽出的牌的牌面數(shù)字比3大的概率是多少?
(3)甲乙約定:若甲抽到的牌的牌面數(shù)字比乙大,則甲勝,反之,則乙勝,你認為此游戲是否公平,說明你的理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù), 為正實數(shù).
(1)當時,求曲線在點處的切線方程;
(2)求證: ;
(3)若函數(shù)有且只有個零點,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列滿足.
(1)求證:數(shù)列是等比數(shù)列,并求的通項公式;
(2)記數(shù)列的前項和,求使得成立的最小整數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在三棱柱中,已知,點在底面的投影是線段的中點.
(1)證明:在側(cè)棱上存在一點,使得平面,并求出的長;
(2)求:平面與平面夾角的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com