10.“函數(shù)f(x)=x2-6mx+6的減區(qū)間為(-∞,3]”是“m=1”的(  )
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分又不必要條件

分析 根據(jù)函數(shù)的單調(diào)性求出“函數(shù)f(x)=x2-6mx+6在區(qū)間(-∞,3]上為減函數(shù)”的充要條件,結(jié)合集合的包含關(guān)系判斷即可.

解答 解:若函數(shù)f(x)=x2-6mx+6的減區(qū)間為(-∞,3],則3m=3,
解得:m=1,
故“函數(shù)f(x)=x2-6mx+6的減區(qū)間為(-∞,3]”是“m=1”的充分必要條件,
故選:C.

點(diǎn)評 本題考查了充分必要條件,考查集合的包含關(guān)系,是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.如圖,函數(shù)y=x2圖象下方的點(diǎn)構(gòu)成的陰影部分面積$\frac{16}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知點(diǎn)A,B的坐標(biāo)分別是$(-\frac{1}{2},0)$,$(\frac{1}{2},0)$,直線AM,BM相交于點(diǎn)M,且直線AM的斜率與直線BM的斜率的差是-1.
(1)過點(diǎn)M的軌跡C的方程;
(2)過原點(diǎn)作兩條互相垂直的直線l1、l2分別交曲線C于點(diǎn)A,C和B,D,求四邊形ABCD面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知橢圓$\frac{x^2}{a_1^2}+\frac{y^2}{b_1^2}=1({a_1}>{b_1}>0)$的離心率為$\frac{{\sqrt{2}}}{2}$,雙曲線$\frac{x^2}{a_2^2}-\frac{y^2}{b_2^2}=1({a_2}>0,{b_2}>0)$與橢圓有相同的焦點(diǎn)F1,F(xiàn)2,M是兩曲線的一個公共點(diǎn),若∠F1MF2=60°,則雙曲線的離心率e為$\frac{2\sqrt{42}}{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知定義域?yàn)镈的函數(shù)f(x),如果對任意的x∈D,存在正數(shù)m,使得|f(x)|≤mx2恒成立,那么稱函數(shù)f(x)是D上的“倍平方的約束函數(shù)”.給出下列四個函數(shù):①$f(x)=\frac{1}{2}{x^2}$,②f(x)=2x,③f(x)=(k2+1)x+1,④$f(x)=\frac{x^2}{{{x^2}-x+1}}$;其中是“倍平方約束函數(shù)”的是①③④(只填正確選項(xiàng)的序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.圓x2+y2+2x-6y+1=0關(guān)于直線ax-by+3=0(a>0,b>0)對稱,則$\frac{1}{a}$+$\frac{3}$的最小值是( 。
A.2$\sqrt{3}$B.6$\frac{2}{3}$C.4D.5$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知$sin(x-\frac{3π}{7})=\frac{4}{5}$,則$cos(\frac{13π}{14}-x)$=(  )
A.$\frac{3}{5}$B.-$\frac{3}{5}$C.$\frac{4}{5}$D.-$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.如圖,圓O和圓O′都經(jīng)過點(diǎn)A和點(diǎn)B,PQ切圓O于點(diǎn)P,交圓O′于Q,M,交AB的延長線于N.若PN=2,MN=1,則MQ等于(  )
A.$\frac{7}{2}$B.3C.$\sqrt{10}$D.$2\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=$\frac{\sqrt{3}}{2}$sin2x-cos2x-$\frac{1}{2}$,(x∈R)
(1)當(dāng)x∈[-$\frac{π}{12}$,$\frac{5π}{12}$]時(shí),求函數(shù)f(x)的值域.
(2)設(shè)△ABC的內(nèi)角A,B,C的對應(yīng)邊分別為a,b,c,且c=$\sqrt{3}$,f(C)=0,sinB=2sinA,求a,b的值.

查看答案和解析>>

同步練習(xí)冊答案