18.已知橢圓$\frac{x^2}{a_1^2}+\frac{y^2}{b_1^2}=1({a_1}>{b_1}>0)$的離心率為$\frac{{\sqrt{2}}}{2}$,雙曲線$\frac{x^2}{a_2^2}-\frac{y^2}{b_2^2}=1({a_2}>0,{b_2}>0)$與橢圓有相同的焦點(diǎn)F1,F(xiàn)2,M是兩曲線的一個(gè)公共點(diǎn),若∠F1MF2=60°,則雙曲線的離心率e為$\frac{2\sqrt{42}}{7}$.

分析 設(shè)|MF1|=m,|MF2|=n,不妨設(shè)m>n.可得:m+n=2a1,m-n=2a2,(2c)2=m2+n2-2mncos60°=(m+n)2-2mn-2mncos60°,化簡(jiǎn)基礎(chǔ)即可得出.

解答 解:設(shè)|MF1|=m,|MF2|=n,不妨設(shè)m>n.
則m+n=2a1,m-n=2a2,(2c)2=m2+n2-2mncos60°=(m+n)2-2mn-2mncos60°,
可得:4c2=${a}_{1}^{2}$+12${a}_{2}^{2}$,
∴4=$(\frac{1}{\sqrt{2}})^{2}$+12×$\frac{1}{{e}^{2}}$,解得e=$\frac{2\sqrt{42}}{7}$.
故答案為:$\frac{2\sqrt{42}}{7}$.

點(diǎn)評(píng) 本題考查了橢圓與雙曲線的定義標(biāo)準(zhǔn)方程及其性質(zhì)、余弦定理,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.函數(shù)$f(x)=\frac{1}{{{3^x}-1}}+a$(x≠0),則“f(-1)=-1”是“函數(shù)f(x)為奇函數(shù)”的充要條件(用“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.以下函數(shù)在R上是減函數(shù)的是( 。
A.y=1-x2B.$y={log_{\frac{1}{2}}}x$C.$y={x^{\frac{1}{2}}}$D.$y={(\frac{1}{3})^x}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知偶函數(shù)f(x)在R上的任一取值都有導(dǎo)數(shù),f′(1)=-2,f(x-2)=f(x+2),則曲線y=f(x)在x=4k-5(k∈Z)處的切線的斜率為-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知sin(3π+α)=2sin($\frac{3π}{2}$+α),求下列各式的值.
(1)$\frac{sinα-4cosα}{5sinα+2cosα}$;            
(2)sin2α+sin2α+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.在△ABC中,B=30°,AC=2,則AB+BC的最大值為2($\sqrt{6}$+$\sqrt{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.“函數(shù)f(x)=x2-6mx+6的減區(qū)間為(-∞,3]”是“m=1”的( 。
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分又不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.為了了解學(xué)生的數(shù)學(xué)復(fù)習(xí)情況,某校從第四次模擬考試成績(jī)中抽取一個(gè)樣本,將樣本分成5組,繪成頻率分布直方圖,圖中從左到右小矩形面積之比為2:5:10:5:3,最左邊一組的頻數(shù)為4,請(qǐng)結(jié)合直方圖解決下列問題.
(Ⅰ)求中位數(shù);
(Ⅱ)列出頻率分布表;
(Ⅲ)從樣本中成績(jī)?cè)赱120,140)內(nèi)的學(xué)生中任取2個(gè)學(xué)生,若成績(jī)?cè)赱120,130)內(nèi)獎(jiǎng)給1個(gè)小紅旗;若成績(jī)?cè)赱130,140)內(nèi)獎(jiǎng)給2個(gè)小紅旗.設(shè)X表示2個(gè)學(xué)生所得紅旗總數(shù),求X的分布列和E(X).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.在正項(xiàng)等比數(shù)列中a3=125,a1=25,則公比q=( 。
A.5B.3C.$\sqrt{5}$D.$\sqrt{6}$

查看答案和解析>>

同步練習(xí)冊(cè)答案