11.已知直線x-ay+a=0與直線3x+y+2=0垂直,則實(shí)數(shù)a的值為3.

分析 利用相互垂直的直線與斜率之間的關(guān)系即可得出.

解答 解:∵直線x-ay+a=0與直線3x+y+2=0垂直,
∴3-a=0,
解得a=3.
故答案為:3.

點(diǎn)評(píng) 本題考查了相互垂直的直線與斜率之間的關(guān)系,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知橢圓$\frac{{y}^{2}}{{a}^{2}}$+x2=1(a>0)的焦點(diǎn)在y軸上,長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的兩倍,則a=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知m∈R,i為虛數(shù)單位,且(m+2i)2=-3+4i.
(1)求實(shí)數(shù)m的值;
(2)若|z-1|=|m+2i|,求復(fù)數(shù)z在復(fù)平面上所對(duì)應(yīng)的點(diǎn)P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知函數(shù)f(x)是定義在R上的奇函數(shù),且f(-3)=0,當(dāng)x>0時(shí),有f(x)-xf′(x)>0成立,則不等式f(x)>0的解集是( 。
A.(-∞,-3)∪(0,3)B.(-∞,-3)∪(3,+∞)C.(-3,0)∪(0,3)D.(-3,0)∪(3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.四邊形ABCD中,$\overrightarrow{AB}$=(6,1),$\overrightarrow{BC}$=(x,y),$\overrightarrow{CD}$=(-2,-3).
(1)若$\overrightarrow{BC}$∥$\overrightarrow{DA}$,求x與y滿(mǎn)足的關(guān)系式;
(2)滿(mǎn)足(1)的同時(shí)又有$\overrightarrow{AC}$⊥$\overrightarrow{BD}$,求x,y的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.對(duì)于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0),定義f″(x)是函數(shù)y=f(x)的導(dǎo)函數(shù)y=f′(x)的導(dǎo)數(shù),若方程f″(x)=0有實(shí)數(shù)解x0,則稱(chēng)點(diǎn)(x0,f(x0))為函數(shù)y=f(x)的圖象的“拐點(diǎn)”,可以證明,任何三次函數(shù)的圖象都有“拐點(diǎn)”,任何三次函數(shù)的圖象都有對(duì)稱(chēng)中心,且“拐點(diǎn)”就是對(duì)稱(chēng)中心.請(qǐng)你根據(jù)這一結(jié)論判斷下列命題:
①任意三次函數(shù)都關(guān)于點(diǎn)(-$\frac{3a}$,f(-$\frac{3a}$))對(duì)稱(chēng);
②存在三次函數(shù)y=f(x),f(x)=0有實(shí)數(shù)解x0,則稱(chēng)點(diǎn)(x0,f(x0))為函數(shù)y=f(x)的圖象的對(duì)稱(chēng)中心;
③存在三次函數(shù)的圖象不止一個(gè)對(duì)稱(chēng)中心;
④若函數(shù)g(x)=$\frac{1}{3}$x3-$\frac{1}{2}$x2-$\frac{5}{12}$,則g($\frac{1}{2017}$)+g($\frac{2}{2017}$)+g($\frac{3}{2017}$)+…+g($\frac{2016}{2017}$)=-1008
其中正確命題的序號(hào)為①②④(寫(xiě)出所有正確命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知集合M={a,b}⊆{x|1≤x≤2016,x∈N*},若集合M的元素同時(shí)滿(mǎn)足以下兩個(gè)條件:①a,b∈{x|x=n2,n∈N*};②a,b∈{x|x=2n,n∈N*},則符合條件的集合M的個(gè)數(shù)為( 。
A.5B.10C.15D.31

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.直三棱柱ABC-A1B1C1中,AB⊥AC,AB=2,AC=4,AA1=2,$\overrightarrow{BD}$=λ$\overrightarrow{DC}$.
(1)若λ=1,求直線DB1與平面A1C1D所成角的正弦值;
(2)若二面角B1-A1C1-D的大小為60°,求實(shí)數(shù)λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.如圖,棱長(zhǎng)為4的正方體ABCD-A1B1C1D1,點(diǎn)A在平面α內(nèi),平面ABCD與平面α所成的二面角為30°,則頂點(diǎn)C1到平面α的距離的最大值是( 。
A.2(2+$\sqrt{2}$)B.2($\sqrt{3}$+$\sqrt{2}$)C.2($\sqrt{3}$+1)D.2($\sqrt{2}$+1)

查看答案和解析>>

同步練習(xí)冊(cè)答案