分析 化橢圓方程為標準方程,可得,再結合θ的范圍得答案.
解答 解:由x2sinθ-y2cosθ=1,得$\frac{{x}^{2}}{\frac{1}{sinθ}}+\frac{{y}^{2}}{\frac{1}{-cosθ}}=1$,
∵方程x2sinθ-y2cosθ=1表示焦點在y軸上的橢圓,
∴$\frac{1}{-cosθ}>\frac{1}{sinθ}>0$,得sinθ>-cosθ>0,
又0<θ<π,∴$\frac{π}{2}<θ<\frac{3π}{4}$.
故答案為:($\frac{π}{2},\frac{3π}{4}$).
點評 本題考查橢圓的標準方程,考查了三角函數值的大小比較,是基礎題.
科目:高中數學 來源: 題型:選擇題
A. | e1•e2>1 | B. | e1•e2<1 | ||
C. | e1•e2=1 | D. | e1•e2與1大小不確定 |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 命題“若sinx=siny,則x=y”的逆否命題為真命題 | |
B. | “x=-1”是“x2-5x-6=0“的必要不充分條件 | |
C. | 命題“?x∈R,x2-5x-6=0”的否定是“?x∈R,x2-5x-6=0” | |
D. | 命題“若x2=1,則x=1”的否命題為“若x2≠1,則x≠1” |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{{2\sqrt{2}}}{7}$ | B. | $\frac{{4\sqrt{2}}}{7}$ | C. | $\frac{{6\sqrt{2}}}{7}$ | D. | $\frac{{8\sqrt{2}}}{7}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | (-∞,1) | B. | (-∞,1] | C. | (-∞,e${\;}^{\frac{π}{2}}$) | D. | (-∞,e${\;}^{\frac{π}{2}}$] |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com