①如果一個幾何體的三視圖是完全相同的,則這個幾何體一定是正方體;
②如果一個幾何體的正視圖和俯視圖都是矩形,則這個幾何體一定長方體;
③如果一個幾何體的三視圖都是矩形,則這個幾何體是長方體;
④如果一個幾何體的正視圖和俯視圖都是等腰梯形,則這個幾何體一定圓臺;
其中說法正確的是
 
考點:簡單空間圖形的三視圖
專題:空間位置關系與距離
分析:找出①的其它可能幾何體---球;
找出滿足②其它可能幾何體是圓柱;
對于③,如果一個幾何體的三視圖都是矩形,則這個幾何體是長方體;正確;
找出滿足④可能的其它幾何體是棱臺;然后判斷即可.
解答: 解:對于①,如果一個幾何體的三視圖是完全相同的,則這個幾何體是正方體;也可能是球,不正確;
對于②,如果一個幾何體的正視圖和俯視圖都是矩形,則這個幾何體是長方體;可能是放倒的圓柱,不正確;
對于③,如果一個幾何體的三視圖都是矩形,則這個幾何體是長方體;正確;
對于④,如果一個幾何體的正視圖和側視圖都是等腰梯形,則這個幾何體是圓臺.可能是棱臺;不正確
故答案為:③
點評:本題以命題為依托,考查幾何體的三視圖的作法,對于常見幾何體的三視圖,做到心中有數(shù),解題才能明辨是非,推出正確結果.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知扇形的周長為8cm,圓心角α為2rad,求:
(1)該扇形的面積;
(2)圓心角所對弦長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點M是拋物線y2=8x上的動點,F(xiàn)為拋物線的焦點,點A在圓C:(x-3)2+(y+1)2=1上,則|AM|+|MF|的最小值為(  )
A、2
B、4
C、6
D、
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給定下列命題:
(1)在△ABC中,∠A<∠B是cos2A>cos2B的充要條件;
(2)λ,μ為實數(shù),若λ
a
b
,則
a
b
共線;
(3)若向量
a
,
b
滿足|
a
|=|
b
|,則
a
=
b
a
=-
b
;
(4)函數(shù)y=sin(2x+
π
3
)sin(
π
6
-2x)
的最小正周期是π;
(5)若命題p為:
1
x-1
>0,則?p:
1
x-1
≤0
(6)由a1=1,an=3n-1,求出S1,S2,S3猜想出數(shù)列的前n項和Sn的表達式的推理是歸納推理.
其中正確的命題的個數(shù)為( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知拋物線的一條過焦點F的弦PQ,點R在直線PQ上,且滿足
OR
=
1
2
(
OP
+
OQ
)
,R在拋物線準線上的射影為S,設α,β是△PQS中的兩個銳角,則下列四個式子
①tanαtanβ=1;②sinα+sinβ≤
2
;③cosα+cosβ>1;④|tan(α-β)|>tan
α+β
2

中一定正確的有( 。
A、1個B、2個C、3個D、4個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某三棱錐的三視圖如圖所示,這個三棱錐最長棱的棱長是(  )
A、1
B、
2
C、
3
D、2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

移動公司在國慶期間推出4G套餐,對國慶節(jié)當日辦理套餐的客戶進行優(yōu)惠,優(yōu)惠方案如下:選擇套餐一的客戶可獲得優(yōu)惠200元,選擇套餐二的客戶可獲得優(yōu)惠500元,選擇套餐三的客戶可獲得優(yōu)惠300元.國慶節(jié)當天參與活動的人數(shù)統(tǒng)計結果如圖所示,現(xiàn)將頻率視為概率.
(1)求某人獲得優(yōu)惠金額不低于300元的概率;
(2)若采用分層抽樣的方式從參加活動的客戶中選出6人,再從該6人中隨機選出兩人,求這兩人獲得相等優(yōu)惠金額的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

△ABC的內角A,B,C的對邊分別為a,b,c,若a,b,c成等比數(shù)列,且c=2a,則sinB=( 。
A、
1
4
B、
3
4
C、
7
4
D、
2
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設M,m分別是f(x)在區(qū)間[a,b]上的最大值和最小值,則m(b-a)≤∫abf(x)dx≤M(b-a),由上述估值定理,估計定積分
2
-1
2-x2
dx的取值范圍是
 

查看答案和解析>>

同步練習冊答案