【題目】已知直線的極坐標(biāo)方程是,以極點為平面直角坐標(biāo)系的原點,極軸為軸的正半軸,建立平面直角坐標(biāo)系,曲線C的參數(shù)方程是,(為參數(shù)).
(1)求直線被曲線C截得的弦長;
(2)從極點作曲線C的弦,求各弦中點軌跡的極坐標(biāo)方程.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)是定義在上的奇函數(shù),當(dāng)時,.
(1)求在上的解析式;
(2)若,函數(shù),是否存在實數(shù)使得的最小值為,若存在,求的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)的圖象在點處的切線的斜率為1,問:在什么范圍取值時,對于任意的,函數(shù)在區(qū)間上總存在極值?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知橢圓C:的左、右項點分別為A1,A2,左右焦點分別為F1,F(xiàn)2,離心率為,|F1F2|=,O為坐標(biāo)原點.
(1)求橢圓C的方程;
(2)設(shè)過點P(4,m)的直線PA1,PA2與橢圓分別交于點M,N,其中m>0,求的面積S的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】年月日,小劉從各個渠道融資萬元,在某大學(xué)投資一個咖啡店,年月日正式開業(yè),已知開業(yè)第一年運(yùn)營成本為萬元,由于工人工資不斷增加及設(shè)備維修等,以后每年成本增加萬元,若每年的銷售額為萬元,用數(shù)列表示前年的純收入.(注:純收入前年的總收入前年的總支出投資額)
(1)試求年平均利潤最大時的年份(年份取正整數(shù))并求出最大值.
(2)若前年的收入達(dá)到最大值時,小劉計劃用前年總收入的對咖啡店進(jìn)行重新裝修,請問:小劉最早從哪一年對咖啡店進(jìn)行重新裝修(年份取整數(shù))?并求小劉計劃裝修的費(fèi)用.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),曲線y=f(x)在點(1,f(1))處的切線方程為y=x.
(1)求函數(shù)f(x)的單調(diào)區(qū)間及極值;
(2)若x≥1,f(x)≤kx恒成立,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)若不等式對任意的恒成立,求實數(shù)的取值范圍;
(2)記表示中的最小值,若函數(shù)在內(nèi)恰有一個零點,求實的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】由0,1,2,3,4,5,6,7,8,9組成沒有重復(fù)數(shù)字的五位數(shù),且是奇數(shù),其中恰有兩個數(shù)字是偶數(shù),則這樣的五位數(shù)的個數(shù)為( ).
A.7200B.6480C.4320D.5040
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線,是坐標(biāo)原點,點是拋物線上一點(與坐標(biāo)原點不重合),圓是以線段為直徑的圓。
(1)若點坐標(biāo)為,求拋物線方程以及圓方程;
(2)若,以線段為直徑的圓與拋物線交于點(與點不重合),求圓面積的最小值。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com