若雙曲線的一個(gè)焦點(diǎn)在圓上,則雙曲線的漸近線方程為
A. B. C. D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2014-2015學(xué)年江西省六校高三3月聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:選擇題
已知函數(shù)f(x)=ln(-4x)+1,則f(lg3)+f(lg)=( )
A.2 B.1 C.0 D.-1
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014-2015學(xué)年湖北省武漢市畢業(yè)生二月調(diào)研測(cè)試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:填空題
(選修4-4:坐標(biāo)系與參數(shù)方程)
在極坐標(biāo)系中,點(diǎn)到直線的距離是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014-2015學(xué)年福建省等高三上學(xué)期三校聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知?jiǎng)狱c(diǎn)到點(diǎn)的距離等于點(diǎn)到直線的距離,點(diǎn)的軌跡為.
(Ⅰ)求軌跡的方程;
(Ⅱ)設(shè)為直線上的點(diǎn),過(guò)點(diǎn)作曲線的兩條切線,,
(�。┊�(dāng)點(diǎn)時(shí),求直線的方程;
(ⅱ)當(dāng)點(diǎn)在直線上移動(dòng)時(shí),求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014-2015學(xué)年福建省等高三上學(xué)期三校聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:填空題
已知函數(shù),則 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014-2015學(xué)年福建省等高三上學(xué)期三校聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:選擇題
已知命題:“”是“”的充要條件,命題:“”的否定是“”
A.“ ”為真 B.“ ”為真 C.真假 D.均為假
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014-2015學(xué)年福建省等高三上學(xué)期三校聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù)
(Ⅰ)若時(shí),函數(shù)在其定義域上是增函數(shù),求b的取值范圍;
(Ⅱ)在(Ⅰ)的結(jié)論下,設(shè)函數(shù)求的最小值;
(Ⅲ)設(shè)函數(shù)的圖象C1與函數(shù)的圖象C2交于P、Q,過(guò)線段PQ的中點(diǎn)R作x軸的垂線分別交C1、C2于點(diǎn)M、N,問(wèn)是否存在點(diǎn)R,使C1在M處的切線與C2在N處的切線平行?若存在,求出R的橫坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014-2015學(xué)年福建省等高三上學(xué)期三校聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:選擇題
已知某幾何體的三視圖如圖所示,則該幾何體的體積是 ( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2015年?yáng)|北三省四市教研聯(lián)合體高考模擬試卷(一)理科數(shù)學(xué)試卷(解析版) 題型:選擇題
在如圖所示的坐標(biāo)平面的可行域內(nèi)(陰影部分且包括邊界),若目標(biāo)函數(shù)取得最小值的最優(yōu)解有無(wú)數(shù)個(gè),則的最大值是( )
A. B.
C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com