“贏在中國”是中央電視臺的一檔全國性商戰(zhàn)真人秀節(jié)目,獲勝者可以獲得企業(yè)提供的一大筆風險投資,某創(chuàng)業(yè)者通過“2012贏在中國”獲得600萬元創(chuàng)業(yè)資金支持,計劃投資A、B兩個項目,按要求對對項目A的投資不小于對項目B投資的
2
3
,且對每個項目的投資不能低于5萬元;對項目A每投資1萬元可獲得0.4萬元的利潤,對項目B每投資1萬元可獲得0.6萬元的利潤,該創(chuàng)業(yè)者正確規(guī)劃投資后,在這兩個項目上共可獲得的最大利潤為
( 。
A、240萬元
B、304萬元
C、312萬元
D、360萬元
考點:簡單線性規(guī)劃
專題:不等式的解法及應用
分析:這是一個簡單的投資分析,因為對乙項目投資獲利較大,故在投資規(guī)劃要求內(nèi)(對項目甲的投資不小于對項目乙投資的
2
3
倍),盡可能多地安排資金投資于乙項目,即對項目甲的投資等于對項目乙投資的
2
3
倍可獲最大利潤.這是最優(yōu)解法.
解答: 解:因為對乙項目投資獲利較大,
故在投資規(guī)劃要求內(nèi)(對項目甲的投資不小于對項目乙投資的
2
3
倍)
盡可能多地安排資金投資于乙項目,
即對項目甲的投資等于對項目乙投資的
2
3
倍可獲最大利潤.這是最優(yōu)解法.
即對甲項目投資240萬元,對乙項目投資360萬元,可獲最大利潤312萬元.
故選:C.
點評:用圖解法解決線性規(guī)劃問題時,分析題目的已知條件,找出約束條件和目標函數(shù)是關鍵,可先將題目中的量分類、列出表格,理清頭緒,然后列出不等式組(方程組)尋求約束條件,并就題目所述找出目標函數(shù).然后將可行域各角點的值一一代入,最后比較,即可得到目標函數(shù)的最優(yōu)解.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

全集U=R,若集合A={x|3≤x<10},B={x|2<x≤7},
(1)求A∪B,(∁UA)∩(∁UB); 
(2)若集合C={x|x>a},A⊆C,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出定義:若函數(shù)f(x)在(a,b)上可導,即f′(x)存在,且導函數(shù)f′(x)在(a,b)上也可導,則稱f(x)在(a,b)上存在二階導函數(shù),記f″(x)=(f′(x))′.若f″(x)<0在(a,b)上恒成立,則稱函數(shù)f(x)在(a,b)上為凸函數(shù).已知函數(shù)f(x)=
1
12
x4-
1
6
mx3-
3
2
x2
,若對任意實數(shù)m滿足|m|≤2時,函數(shù)f(x)在(a,b)上為凸函數(shù),則b-a的最大值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,a,b,c分別是角A,B,C所對的邊,已知a=
3
,b=3,c=30°,則A=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

有五本不同的書,其中數(shù)學書2本,語文書2本,物理書1本,將書擺放在書架上
(1)要求同一科目的書相鄰,有多少種排法?(用數(shù)字作答)
(2)要求同一科目的書不相鄰,有多少種排法?(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求g(x)=-x2+2x,在區(qū)間[0,t]上的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若f(x)是偶函數(shù),且在(0,+∞)上是減函數(shù),判斷f(x)在(-∞,0)上的單調(diào)性并證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

解不等式:4≤|x2-4x|<5.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

三棱錐A-BCD中,AB與CD成60°的角,AB與CD之間距離為2,AB=CD=2,求三棱錐A-BCD體積V.

查看答案和解析>>

同步練習冊答案