8.函數(shù)f(x)=$\frac{x+1}{x-a}$在區(qū)間[1,+∞)上單調(diào)遞減,則實(shí)數(shù)a的取值范圍為(-1,1).

分析 根據(jù)分式的性質(zhì),利用分子常數(shù)化進(jìn)行化簡(jiǎn),結(jié)合反比例函數(shù)的性質(zhì)進(jìn)行轉(zhuǎn)化求解即可.

解答 解:f(x)=$\frac{x+1}{x-a}$=$\frac{x-a+a+1}{x-a}$=1+$\frac{a+1}{x-a}$,
則函數(shù)在(a,+∞)上為單調(diào)函數(shù),
∵函數(shù)f(x)=$\frac{x+1}{x-a}$在區(qū)間[1,+∞)上單調(diào)遞減,
∴$\left\{\begin{array}{l}{a+1>0}\\{a<1}\end{array}\right.$,即$\left\{\begin{array}{l}{a>-1}\\{a<1}\end{array}\right.$得-1<a<1,
故實(shí)數(shù)a的取值范圍是(-1,1),
故答案為:(-1,1)

點(diǎn)評(píng) 本題主要考查函數(shù)單調(diào)性的應(yīng)用,根據(jù)分式函數(shù)的性質(zhì),利用分子常數(shù)化進(jìn)行化簡(jiǎn)是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知點(diǎn)P(-3,5),Q(2,1),向量$\overrightarrow m=({-λ,1})$,若$\overrightarrow{PQ}∥\overrightarrow m$,則實(shí)數(shù)λ等于( 。
A.$\frac{4}{5}$B.-$\frac{4}{5}$C.$\frac{5}{4}$D.-$\frac{5}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.設(shè)函數(shù)y=f(x)在定義域內(nèi)可導(dǎo),它的圖象如下圖所示,則它的導(dǎo)函數(shù)y=f'(x)圖象可能為(  ) 
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.?dāng)?shù)列{an}的通項(xiàng)公式為${a_n}={n^2}$,前n項(xiàng)和記為Sn
(1)求S1,S2,S3
(2)用數(shù)學(xué)歸納法證明:${S_n}=\frac{n(n+1)(2n+1)}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.若函數(shù)f(x)=ax3-x2+bx(a,b∈R).當(dāng)x=3時(shí),f(x)有極小值-9.
(1)求f(x)的解析式;
(2)若函數(shù)g(x)=f'(x)+(6m-8)x+4,h(x)=mx,當(dāng)m>0時(shí),對(duì)于任意x,g(x)和h(x)的值至少有一個(gè)是正數(shù),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知集合A={x||x-2|≤1},且A∩B=∅,則集合B可能是( 。
A.(-∞,-1)B.(1,2)C.{2,5}D.{x|x2≤1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.設(shè)函數(shù)f(x)=lnx+$\frac{k}{x}$,k∈R.
(Ⅰ)若曲線y=f(x)在點(diǎn)(e,f(e))處的切線與直線x-2=0垂直,求出k值.
(Ⅱ)試討論f(x)的單調(diào)區(qū)間;
(Ⅲ)已知函數(shù)f(x)在x=e處取得極小值,不等式f(x)<$\frac{m}{x}$的解集為P,若M={x|e≤x≤3},且M∩P≠φ,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知△ABC的內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,a=15,b=10,A=60°,則sinB等于( 。
A.-$\frac{\sqrt{6}}{3}$B.$\frac{\sqrt{6}}{3}$C.$\frac{\sqrt{3}}{3}$D.-$\frac{\sqrt{3}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知6tanαsinα=5,α∈(-$\frac{π}{2}$,0),則sinα的值是-$\frac{\sqrt{5}}{3}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案