分析 (1)由$\left\{\begin{array}{l}f(x)=g(x)+h(x)\\ f(-x)=-g(x)+h(x)\end{array}\right.$得g(x)和h(x)的解析式.
(2)要使命題?p,p∨q都是假命題,即p真q假,分別求出相應(yīng)命題為真時,a的范圍,即可得出結(jié)論.
解答 解:(1)由$\left\{\begin{array}{l}f(x)=g(x)+h(x)\\ f(-x)=-g(x)+h(x)\end{array}\right.$得,
$g(x)=\frac{f(x)-f(-x)}{2}=(a+1)x$,$h(x)=\frac{f(x)+f(-x)}{2}={x^2}+a+2$.
(2)由p真得,$-\frac{a+1}{2}≤{(a+1)^2}$,即$a≤-\frac{3}{2}$或a≥-1.
由q真得,a<-1.
要使命題?p,p∨q都是假命題,即p真q假.
所以a∈[-1,+∞).
點評 本題考查函數(shù)解析式的求解,考查復合命題真假的運用,考查學生的計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{5}$ | B. | $\sqrt{6}$ | C. | $\sqrt{7}$ | D. | 2$\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -$\frac{9}{4}$ | B. | -$\frac{5}{2}$ | C. | $\frac{9}{4}$ | D. | $\frac{5}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | y=|x|+1 | B. | y=$\frac{1}{x}$ | C. | y=-x2+1 | D. | y=-x|x| |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com