2.在矩形ABCD中,AB=2,AD=1,E為CD的中點,將△ADE沿AE折起,使平面ADE⊥平面ABCE,得到幾何體D-ABCE,M點是此時BD的中點.

(1)求異面直BE和CM所成角的大;
(2)求BD與平面ADE所成角的余弦值.

分析 (1)通過線面垂直,求異面直BE和CM所成角的大;
(2)通過直線與平面垂直,找出BD和平面ADE所成角,然后求出所成角的余弦值.

解答 解:(1)∵矩形ABCD中,AB=2,AD=1,E為CD的中點
∴AE=BE=$\sqrt{2}$,AB=2,
∴AE⊥BE,
又∵平面ADE⊥平面ABCE,平面ADE∩平面ABCE=AE,
∴BE⊥平面ADE,
∴BE⊥EF.
取AD中點F,連接EF,MF,則MF平行且等于CE,
∴CEFM是平行四邊形,
∴CF∥EM,
∴BE⊥CM,
∴異面直BE和CM所成角的大小為90°;
(2)因為(1)BE⊥平面ADE,所以BD和平面ADE所成角就是∠BDE,
DE=1,BE=$\sqrt{2}$,BD=$\sqrt{3}$
∴BD和面ADE所成角的余弦值為$\frac{\sqrt{3}}{3}$.

點評 本題考查直線與平面垂直,折疊問題,直線與平面所成角的求法,考查空間想象能力,計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的虛軸長為4,焦距為$4\sqrt{3}$,則雙曲線的漸近線方程為(  )
A.y=±$\sqrt{2}$xB.y=±2xC.y=±$\frac{\sqrt{2}}{2}$xD.y=±$\frac{1}{2}$x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知橢圓C1:$\frac{{x}^{2}}{m+2}-\frac{{y}^{2}}{n}$=1與雙曲線C2:$\frac{{x}^{2}}{m}+\frac{{y}^{2}}{n}$=1有相同的焦點,則橢圓C1的離心率e1的取值范圍為$\frac{\sqrt{2}}{2}$<e1<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.下列點在曲線x2+y2-3xy+2=0上的是(  )
A.$(0,\sqrt{2})$B.$(\sqrt{2},0)$C.$(-\sqrt{2},\sqrt{2})$D.$(\sqrt{2},\sqrt{2})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=x2+(a+1)x+(a+2)
(1)若f(x)能表示成一個奇函數(shù)g(x)和一個偶函數(shù)h(x)的和,求g(x)和h(x)的解析式.
(2)命題p:函數(shù)f(x)在區(qū)間[(a+1)2,+∞)上是增函數(shù);命題q:函數(shù)g(x)是減函數(shù).如果命題¬p,p∨q都是假命題,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.復(fù)數(shù)i+i2+i3+…+i2012+i2013的值為i.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.在正方體ABCD-A1B1C1D1中(如圖),已知點P在直線BC1上運(yùn)動,則下列四個命題:
①三棱錐A-D1PC的體積不變;
②直線AP與平面ACD1所成的角的大小不變;
③二面角P-AD1-C的大小不變;
④M是平面A1B1C1D1上到點D和C1距離相等的點,則M點的軌跡是直線A1D1
其中真命題的編號是①③④(寫出所有真命題的編號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.設(shè)偶函數(shù)f(x)對任意x∈R,都有$f(x+3)=-\frac{1}{f(x)}$,且當(dāng)x∈[-3,-2]時,f(x)=4x,則f(2018)=-8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.一個口袋中裝有大小形狀完全相同的n+3個乒乓球,其中1個乒乓球上標(biāo)有數(shù)字1,2個乒乓球上標(biāo)有數(shù)字2,其余n個乒乓球上均標(biāo)有數(shù)字3(n∈N*),若從這個口袋中隨機(jī)地摸出2個乒乓球,恰有一個乒乓球上標(biāo)有數(shù)字2的概率是$\frac{8}{15}$.
(1)求n的值;
(2)從口袋中隨機(jī)地摸出2個乒乓球,設(shè)ξ表示所摸到的2個乒乓球上所標(biāo)數(shù)字之和,求ξ的分布列和數(shù)學(xué)期望Eξ

查看答案和解析>>

同步練習(xí)冊答案