A. | $\sqrt{5}$ | B. | $\sqrt{6}$ | C. | $\sqrt{7}$ | D. | 2$\sqrt{2}$ |
分析 利用兩點間的距離公式,求出相應距離,即可得出結論.
解答 解:取C(0,0),B($\sqrt{2}$,0),A(x,$\sqrt{2}$),
∴|AB|2:|AC|2=$\frac{(x-\sqrt{2})^{2}+2}{{x}^{2}+2}$=1+$\frac{2-2\sqrt{2}x}{{x}^{2}+2}$,
設1-$\sqrt{2}$x=t,則|AB|2:|AC|2=1+$\frac{2t}{\frac{(1-t)^{2}}{2}+2}$=1+$\frac{4t}{{t}^{2}-2t+5}$,
t=0,|AB|:|AC|=1;
t≠0,|AB|2:|AC|2=1+$\frac{4}{t+\frac{5}{t}-2}$∈[$\frac{3-\sqrt{5}}{2}$,$\frac{3+\sqrt{5}}{2}$],
∴|AB|:|AC|的最大值與最小值的和為$\frac{\sqrt{5}+1}{2}+\frac{\sqrt{5}-1}{2}$=$\sqrt{5}$,
故選:A.
點評 本題考查兩點間的距離公式,考查基本不等式的運用,考查學生的計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $[0,\frac{π}{6}]$ | B. | $[0,\frac{π}{3}]$ | C. | $[0,\frac{π}{2}]$ | D. | $[0,\frac{2π}{3}]$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $[-\frac{1}{12},-\frac{4}{49})$ | B. | $[-\frac{1}{12},0]$ | C. | $(-\frac{4}{49},0]$ | D. | $[-\frac{4}{49},0]$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com