分析 根據(jù)題意可知b=$\frac{{a}^{2}}{4}$,把不等式解的問題轉(zhuǎn)化為方程根的問題,利用韋達(dá)定理求解即可.
解答 解:f(x)=x2+ax+b(a,b∈R)的值域?yàn)閇0,+∞),
∴$\frac{4b-{a}^{2}}{4}$=0,
∴b=$\frac{{a}^{2}}{4}$,
∵f(x)<c的解集為(m,m+4),
∴f(x)-c=0的根為m,m+4,
即x2+ax+$\frac{{a}^{2}}{4}$-c=0的根為m,m+4,
∵(m+4-m)2=(-a)2-4($\frac{{a}^{2}}{4}$-c),
∴4c=16,
c=4.
故答案為4.
點(diǎn)評 考查了二次函數(shù)的最值和不等式和方程根的關(guān)系,韋達(dá)定理的轉(zhuǎn)化.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1 | B. | -2 | C. | 2 | D. | 0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | cosx | B. | $tan\frac{x}{2}$ | C. | sin3x | D. | $ln\frac{5-x}{5+x}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com