4.能夠把圓O:x2+y2=16的周長(zhǎng)和面積同時(shí)分為相等的兩部分的函數(shù)稱為圓O的“和諧函數(shù)”,下列函數(shù)中不是圓O的和諧函數(shù)是( 。
A.cosxB.$tan\frac{x}{2}$C.sin3xD.$ln\frac{5-x}{5+x}$

分析 由圓O的“和諧函數(shù)”的定義,我們易分析出函數(shù)f(x)是奇函數(shù),逐一分析四個(gè)函數(shù)的奇偶性,可得答案.

解答 解:若函數(shù)f(x)是圓O的“和諧函數(shù)”,
則函數(shù)的圖象經(jīng)過圓心且關(guān)于圓心對(duì)稱,
由圓O:x2+y2=16的圓心為坐標(biāo)原點(diǎn),
故函數(shù)f(x)是奇函數(shù),
由于A中cosx為偶函數(shù),B,C,D均為奇函數(shù),
故選:A.

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是函數(shù)的奇偶性,其中根據(jù)新定義圓O的“和諧函數(shù)”判斷出滿足條件的函數(shù)為奇函數(shù)是解答的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知函數(shù)f(x)=x2+ax+b(a,b∈R)的值域?yàn)閇0,+∞),若關(guān)于x的不等式f(x)<c的解集為(m,m+4),則實(shí)數(shù)c的值為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知函數(shù)f(x)=cos(2x-$\frac{π}{3}$)+2sin2x.
(1)求函數(shù)f(x)的對(duì)稱軸及單調(diào)增區(qū)間;
(2)若α為銳角,且f($\frac{α}{2}$)=$\frac{3}{4}$,求sinα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,asinC-$\sqrt{3}$ccosA=0.
(Ⅰ)求角A的大;
(Ⅱ)若a=2,△ABC的面積為$\sqrt{3}$,求b,c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知|$\overrightarrow a}$|=1,|$\overrightarrow b}$|=$\sqrt{3}$,<$\overrightarrow a,\overrightarrow b$>=150°,則|2$\overrightarrow a-\overrightarrow b}$|=$\sqrt{13}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.命題“若m>0,則方程x2+x-m=0有實(shí)根”與其逆命題分別是( 。
A.真命題,真命題B.真命題,假命題C.假命題,真命題D.假命題,假命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.若不等式|x-2|+|x+3|<a的解集為∅,則a的取值范圍為( 。
A.(2,+∞)B.[-3,+∞)C.(-∞,5]D.(-∞,-3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.某電腦公司有6名產(chǎn)品推銷員,其工作年限與年推銷金額數(shù)據(jù)如表:
推銷員編號(hào)12345
工作年限x/年35679
推銷金額y/萬(wàn)元23345
(1)求年推銷金額y與工作年限x之間的相關(guān)系數(shù)(精確到0.01);
(2)求年推銷金額y關(guān)于工作年限x的線性回歸方程.
(參考數(shù)據(jù):$\sqrt{1.04}$≈1.02.)
參考公式:線性相關(guān)系數(shù)公式:r=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sqrt{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}}$
線性回歸方程系數(shù)公式:$\hat y$=bx+a,其中b=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,a=$\overline{y}$-bx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知函數(shù)f(x)=2a-x2($\frac{1}{e}$≤x≤e,e為自然數(shù)對(duì)數(shù)的底數(shù))與g(x)=2lnx的圖象上存在關(guān)于x軸對(duì)稱的點(diǎn),則實(shí)數(shù)a的最小值為(  )
A.$\frac{1}{2}$B.$\frac{1}{2e^2}$-1C.$\frac{1}{2e^2}$+1D.$\frac{e^2}{2}$-1

查看答案和解析>>

同步練習(xí)冊(cè)答案