7.在1時15分時,時針與分針?biāo)傻淖钚≌鞘?\frac{7π}{24}$弧度.

分析 根據(jù)分針和時針每分鐘旋轉(zhuǎn)的度數(shù)進(jìn)行計算即可.

解答 解:每一小時時針旋轉(zhuǎn)的弧度是$\frac{2π}{12}$=$\frac{π}{6}$,
從12點開始,在1時15分時,時針對應(yīng)的弧度為$\frac{π}{6}$+$\frac{π}{6}$×$\frac{1}{4}$=$\frac{5π}{24}$,
分針是在15分,也就是90°,$\frac{π}{2}$弧度,
則兩者相差$\frac{π}{2}$-$\frac{5π}{24}$=$\frac{7π}{24}$,
故答案為:$\frac{7π}{24}$.

點評 本題主要考查弧度制的應(yīng)用,根據(jù)分針和時針旋轉(zhuǎn)的角度進(jìn)行計算是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的短軸長為2,它的一個焦點恰好是拋物線y2=4x的焦點.
(1)求橢圓的方程;
(2)若上述橢圓的左焦點到直線y=x+m的距離等于$\sqrt{2}$,求該直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知矩形ABCD的頂點都在半徑為5的球O的表面上,且AB=6,BC=2$\sqrt{5}$,則棱錐O-ABCD的側(cè)面積為44.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.閱讀如圖所示的程序框圖,運行相應(yīng)的程序,輸出的結(jié)果為(  )
A.133B.134C.135D.136

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.函數(shù)y=cosx+cos(x-$\frac{π}{3}$)的最大值為$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.設(shè)常數(shù)a∈R,若函數(shù)f(x)=(a-x)|x|存在反函數(shù)f-1(x).
(1)求證:a=0,并求出反函數(shù)f-1(x);
(2)若關(guān)于x的不等式f-1(x2+m)<f(x)對一切x∈[-2,2]恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若P{(x,y)|x>-1},Q={(x,y)|y≤1},則P∩Q對應(yīng)的圖形是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.在平面直角坐標(biāo)xOy中,動點P(x,y)到定直線l:x=-2的距離比到定點F(1,0)的距離大1,D(a,0)是x軸上一動點.
(1)求動點P的軌跡方程G;
(2)當(dāng)a=-1時,過D作直線,交動點P的軌跡于M(x1,y1)、N(x2,y2)兩點,證明:y1y2為定值;
(3)設(shè)A(4,y1)是軌跡方程G在x軸上方的點,過A作AB垂直于y軸,垂足為B,C為OB的中點,以C為圓心,CO為半徑作圓C1,討論直線AD與圓C1的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知函數(shù)f(x)=(x-x1)(x-x2)(x-x3)(其中x1<x2<x3),g(x)=ex-e-x,且函數(shù)f(x)的兩個極值點為α,β(α<β).設(shè)λ=$\frac{{x}_{1}+{x}_{2}}{2}$,μ=$\frac{{{x}_{2}+x}_{3}}{2}$,則(  )
A.g(α)<g(λ)<g(β)<g(μ)B.g(λ)<g(α)<g(β)<g(μ)C.g(λ)<g(α)<g(μ)<g(β)D.g(α)<g(λ)<g(μ)<g(β)

查看答案和解析>>

同步練習(xí)冊答案