分析 (1)連接AC,設(shè)AC∩DB=O,連接A1O,OE.證明A1A⊥BD,BD⊥AC,推出BD⊥平面ACEA1,然后證明A1E⊥BD.
(2)當(dāng)E是CC1的中點(diǎn)時(shí),平面A1BD⊥平面EBD.說(shuō)明∠A1OE為二面角A1-BD-E的平面角.設(shè)棱長(zhǎng)為2a,推出∠A1OE=90°.即可證明平面A1BD⊥平面EBD.
解答 解:連接AC,設(shè)AC∩DB=O,連接A1O,OE.
(1)∵A1A⊥底面ABCD,∴A1A⊥BD,又BD⊥AC,
∴BD⊥平面ACEA1,∵A1E?平面ACEA1,
∴A1E⊥BD.
(2)證明:當(dāng)E是CC1的中點(diǎn)時(shí),平面A1BD⊥平面EBD.
證明如下:
∵A1B=A1D,EB=ED,O為BD中點(diǎn),∴A1O⊥BD,EO⊥BD
∴∠A1OE為二面角A1-BD-E的平面角.
在正方體ABCD-A1B1C1D1中,設(shè)棱長(zhǎng)為2a,
∵E為棱CC1的中點(diǎn),由平面幾何知識(shí),EO=$\sqrt{3}$a,A1O=$\sqrt{6}$a,A1E=3a,
∴A1E2=A1O2+EO2,即∠A1OE=90°.
∴平面A1BD⊥平面EBD.
點(diǎn)評(píng) 本題考查直線(xiàn)與直線(xiàn)垂直,直線(xiàn)與平面垂直的判定定理以及性質(zhì)定理的應(yīng)用,二面角的平面角的求法,平面與平面垂直的證明方法,考查空間想象能力以及計(jì)算能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com