【題目】如圖,在平面直角坐標(biāo)系xoy中,已知橢圓C: =1(a>b>0)的離心率e= ,左頂點為A(﹣4,0),過點A作斜率為k(k≠0)的直線l交橢圓C于點D,交y軸于點E.
(1)求橢圓C的方程;
(2)已知P為AD的中點,是否存在定點Q,對于任意的k(k≠0)都有OP⊥EQ,若存在,求出點Q的坐標(biāo);若不存在說明理由;
(3)若過O點作直線l的平行線交橢圓C于點M,求 的最小值.
【答案】
(1)解:∵橢圓C: =1(a>b>0)的離心率e= ,左頂點為A(﹣4,0),
∴a=4,又 ,∴c=2.
又∵b2=a2﹣c2=12,
∴橢圓C的標(biāo)準(zhǔn)方程為
(2)解:直線l的方程為y=k(x+4),
由 消元得, .
化簡得,(x+4)[(4k2+3)x+16k2﹣12)]=0,
∴x1=﹣4, .
當(dāng) 時, ,
∴ .
∵點P為AD的中點,∴P的坐標(biāo)為 ,
則
直線l的方程為y=k(x+4),令x=0,得E點坐標(biāo)為(0,4k),
假設(shè)存在定點Q(m,n)(m≠0),使得OP⊥EQ,
則kOPkEQ=﹣1,即 恒成立,
∴(4m+12)k﹣3n=0恒成立,∴ ,即 ,
∴定點Q的坐標(biāo)為(﹣3,0).
(3)解:∵OM∥l,∴OM的方程可設(shè)為y=kx,
由 ,得M點的橫坐標(biāo)為 ,
由OM∥l,得
=
= ,
當(dāng)且僅當(dāng) 即 時取等號,
∴當(dāng) 時, 的最小值為
【解析】(1)由橢圓的離心率和左頂點,求出a,b,由此能求出橢圓C的標(biāo)準(zhǔn)方程.(2)直線l的方程為y=k(x+4),與橢圓聯(lián)立,得,(x+4)[(4k2+3)x+16k2﹣12)]=0,由此利用韋達(dá)定理、直線垂直,結(jié)合題意能求出結(jié)果.(3)OM的方程可設(shè)為y=kx,與橢圓聯(lián)立得M點的橫坐標(biāo)為 ,由OM∥l,能求出結(jié)果.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,∠ACB=45°,BC=3,過動點A作AD⊥BC,垂足D在線段BC上且異于點B,連接AB,沿AD將△ABD折起,使∠BDC=90°(如圖2所示),
(1)當(dāng)BD的長為多少時,三棱錐A﹣BCD的體積最大;
(2)當(dāng)三棱錐A﹣BCD的體積最大時,設(shè)點E,M分別為棱BC,AC的中點,試在棱CD上確定一點N,使得EN⊥BM,并求EN與平面BMN所成角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.
(1)證明PC⊥AD;
(2)求二面角A﹣PC﹣D的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓=1(a>b>0)的左、右焦點分別為F1,F2,P是橢圓上一點,|PF1|=λ|PF2|,∠F1PF2=,則橢圓離心率的取值范圍為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在銳角三角形ABC中,角A,B,C的對邊分別為a,b,c,已知sinA= ,tan(A﹣B)=﹣ .
(1)求tanB的值;
(2)若b=5,求c.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】兩臺車床加工同一種機械零件如下表:
分類 | 合格品 | 次品 | 總計 |
第一臺車床加工的零件數(shù) | 35 | 5 | 40 |
第二臺車床加工的零件數(shù) | 50 | 10 | 60 |
總計 | 85 | 15 | 100 |
從這100個零件中任取一個零件,求:
(1)取得合格品的概率;
(2)取得零件是第一臺車床加工的合格品的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知不等式ax2﹣bx﹣1>0的解集是 ,則不等式x2﹣bx﹣a≥0的解集是( )
A.{x|2<x<3}
B.{x|x≤2或x≥3}
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四棱柱ABCD﹣A1B1C1D1的底面ABCD為正方形,AA1⊥AC,M、N分別為棱AA1、CC1的中點.
(1)求證:直線MN⊥平面B1BD;
(2)已知AA1=AB,AA1⊥AB,取線段C1D1的中點Q,求二面角Q﹣MD﹣N的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)點F1(﹣c,0),F(xiàn)2(c,0)分別是橢圓C: =1(a>1)的左、右焦點,P為橢圓C上任意一點,且 的最小值為0.
(1)求橢圓C的方程;
(2)如圖,動直線l:y=kx+m與橢圓C有且僅有一個公共點,點M,N是直線l上的兩點,且F1M⊥l,F(xiàn)2N⊥l,求四邊形F1MNF2面積S的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com