數(shù)列是遞增的等差數(shù)列,且,
(1)求數(shù)列的通項(xiàng)公式;
(2)求數(shù)列的前項(xiàng)和的最小值;
(3)求數(shù)列的前項(xiàng)和

(1) ;(2);(3)

解析試題分析:(1)這是等差數(shù)列的基礎(chǔ)題型,可直接利用基本量(列出關(guān)于的方程組)求解,也可利用等差數(shù)列的性質(zhì),這樣可先求出,然后再求出,得通項(xiàng)公式;(2)等差數(shù)列的前是關(guān)于的二次函數(shù)的形式,故可直接求出,然后利用二次函數(shù)的知識(shí)得到最小值,當(dāng)然也可根據(jù)數(shù)列的特征,本題等差數(shù)列是首項(xiàng)為負(fù)且遞增的數(shù)列,故可求出符合的最大值,這個(gè)最大值就使得最。ㄈ绻,則都使最。;(3)由于前幾項(xiàng)為負(fù),后面全為正,故分類求解(目的是根據(jù)絕對(duì)值定義去掉絕對(duì)值符號(hào)),特別是時(shí),
,這樣可利用第(2)題的結(jié)論快速得出結(jié)論.
試題解析:(1) 由,得、是方程的二個(gè)根,,,此等差數(shù)列為遞增數(shù)列,,公差,      4分
(2),,
        8分
(3)由,解得,此數(shù)列前四項(xiàng)為負(fù)的,第五項(xiàng)為0,從第六項(xiàng)開(kāi)始為正的.        10分
當(dāng)時(shí),
.    12分
當(dāng)時(shí),
.        14分
考點(diǎn):(1)等差數(shù)列的通項(xiàng)公式;(2)等差數(shù)列的前項(xiàng)和公式;(3)絕對(duì)值與分類討論.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)函數(shù)f(x)=(x>0),數(shù)列{an}滿足a1=1,anf (n∈N*,且n≥2).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)Tna1a2a2a3a3a4a4a5+…+(-1)n-1·anan+1,若Tntn2對(duì)n∈N*恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列滿足,
(1)若成等比數(shù)列,求的值;
(2)是否存在,使數(shù)列為等差數(shù)列?若存在,求出所有這樣的;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知{an}是一個(gè)公差大于0的等差數(shù)列,且滿足a3a5=45,a2+a6=14.
(I)求{an}的通項(xiàng)公式;
(Ⅱ)若數(shù)列{bn}滿足:,求{bn}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知集合,對(duì)于數(shù)列.
(Ⅰ)若三項(xiàng)數(shù)列滿足,則這樣的數(shù)列有多少個(gè)?
(Ⅱ)若各項(xiàng)非零數(shù)列和新數(shù)列滿足首項(xiàng),),且末項(xiàng),記數(shù)列的前項(xiàng)和為,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列滿足,,是數(shù)列的前項(xiàng)和.
(1)若數(shù)列為等差數(shù)列.
(。┣髷(shù)列的通項(xiàng)
(ⅱ)若數(shù)列滿足,數(shù)列滿足,試比較數(shù)列 前項(xiàng)和項(xiàng)和的大;
(2)若對(duì)任意,恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列{an}是首項(xiàng)為-1,公差d 0的等差數(shù)列,且它的第2、3、6項(xiàng)依次構(gòu)成等比數(shù)列{bn}的前3項(xiàng)。
(1)求{an}的通項(xiàng)公式;
(2)若Cn=an·bn,求數(shù)列{Cn}的前n項(xiàng)和Sn。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

等比數(shù)列{an}的各項(xiàng)均為正數(shù),且2a1+3a2=1,a32=9a2a6.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=log3a1+log3a2+…+log3an,求數(shù)列的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知各項(xiàng)都不相等的等差數(shù)列的前6項(xiàng)和為60,且的等比中項(xiàng).
( I ) 求數(shù)列的通項(xiàng)公式;
(II) 若數(shù)列滿足,且,求數(shù)列的前項(xiàng)和.

查看答案和解析>>

同步練習(xí)冊(cè)答案