20.已知函數(shù)f(x)=x3-12x.
(1)求f′(1)的值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間.

分析 (1)求導(dǎo)數(shù),即可求f′(1)的值;
(2)求導(dǎo)數(shù),利用導(dǎo)數(shù)的正負(fù)求函數(shù)f(x)的單調(diào)區(qū)間.

解答 解:(1)因為f(x)=x3-12x,
所以f′(x)=3x2-12,所以f′(1)=-9.…(4分)
(2)f′(x)=3x2-12,
解f′(x)>0,得x<-2或x>2.…(6分)
解f′(x)<0,得-2<x<2.…(8分)
所以(-∞,-2)和(2,+∞)為函數(shù)f(x)的單調(diào)增區(qū)間,(-2,2)為函數(shù)f(x)的單調(diào)減區(qū)間.…(10分)

點評 本題考查導(dǎo)數(shù)知識的運用,考查函數(shù)的單調(diào)性,考查學(xué)生的計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知α為第二象限角,sinα=$\frac{3}{5}$,則tan2α=$-\frac{24}{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=|ax+1|,a∈R.
(Ⅰ)若?x∈R,f(x)+f(x-2)≥1恒成立,求實數(shù)a的取值范圍;
(Ⅱ)若f($\frac{a-1}{a}$)+f($\frac{b-1}{a}$)+f($\frac{c-1}{a}$)=4,求f($\frac{{{a^2}-1}}{a}$)+f($\frac{{{b^2}-1}}{a}$)+f($\frac{{{c^2}-1}}{a}$)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.在極坐標(biāo)系中,圓C的方程為ρ=2acosθ(a≠0),以極點為坐標(biāo)原點,極軸為x軸正半軸建立平面直角坐標(biāo)系,設(shè)直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=3t+1}\\{y=4t+3}\end{array}\right.$(t為參數(shù)).
(1)求圓C的直角坐標(biāo)方程(化為標(biāo)準(zhǔn)方程)和直線l的極坐標(biāo)方程;
(2)若直線l與圓C只有一個公共點,且a<1,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=ax4•lnx+bx4-c在x=1處取得極值-3-c.
(1)試求實數(shù)a,b的值;
(2)試求函數(shù)f(x)的單調(diào)區(qū)間;
(3)若對任意x>0,不等式f(x)≥-2c2恒成立,求實數(shù)c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.函數(shù)f(x)的圖象如圖所示,則導(dǎo)函數(shù)y=f′(x)的圖象可能是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.設(shè)函數(shù)f(x)=x3-3ax+b(a>0).
(Ⅰ)若曲線y=f(x)在點(2,f(2))處與直線y=8相切,求a,b的值;
(Ⅱ)求函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知函數(shù)f(x)=$\frac{{e}^{x}}{|x|}$,關(guān)于x的方程f2(x)-2af(x)+a-1=0(a∈R)有3個相異的實數(shù)根,則a的取值范圍是( 。
A.($\frac{{e}^{2}-1}{2e-1}$,+∞)B.(-∞,$\frac{{e}^{2}-1}{2e-1}$)C.(0,$\frac{{e}^{2}-1}{2e-1}$)D.{$\frac{{e}^{2}-1}{2e-1}$}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=$\frac{1}{{2}^{x}-1}$+a是奇函數(shù).
(1)求a的值和函數(shù)f(x)的定義域;
(2)用單調(diào)性的定義證明:函數(shù)f(x)在(0,+∞)上是減函數(shù);
(3)解不等式f(-m2+2m-1)+f(m2+3)<0.

查看答案和解析>>

同步練習(xí)冊答案