如圖所示,哈三中甲,乙兩位同學(xué)分別站在新校區(qū)體育場(chǎng)內(nèi)的A,B兩點(diǎn),利用三角函數(shù)知識(shí)測(cè)量鍋爐房煙囪CD的高.已知AB=15米,∠DAC=60°,∠CAB=15°,∠CBA=45°,求煙囪CD的高.
考點(diǎn):解三角形的實(shí)際應(yīng)用
專題:應(yīng)用題,解三角形
分析:在△ABC中,利用正弦定理求出AC,在直角△DAC中,利用正切函數(shù),求煙囪CD的高.
解答: 解:在△ABC中,AB=15米,∠CAB=15°,∠CBA=45°,∴AC=
15sin45°
sin120°
=5
6
,
在直角△DAC中,∠DAC=60°,∴DC=ACtan60°=15
2
米.
點(diǎn)評(píng):本題考查求煙囪CD的高.考查正弦定理的運(yùn)用,比較基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,函數(shù)y=f(x)的圖象在點(diǎn)P處的切線方程是y=kx+b,若f(1)-f′(1)=2,則b=(  )
A、-1B、1C、2D、-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知半圓O的直徑AB=2,C在BA的延長(zhǎng)線上且AC=1,P為半圓上異于A、B的一點(diǎn),設(shè)∠POC=θ.
(1)設(shè)PB2+PC2=f(θ),求f(θ)的解析式;
(2)以PC為邊作正方形PCMN,求五邊形OCMNP面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=ax2+lnx
(Ⅰ)當(dāng)a=-1時(shí),求函數(shù)y=f(x)的圖象在點(diǎn)(1,f(x))處的切線方程;
(Ⅱ)已知a<0,若函數(shù)y=f(x)的圖象總在直線y=-
1
2
的下方,求a的取值范圍;
(Ⅲ)記f′(x)為函數(shù)f(x)的導(dǎo)函數(shù).若a=1,試問(wèn):在區(qū)間[1,10]上是否存在k(k<100)個(gè)正數(shù)x1,x2,x3…xk,使得f′(x1)+f′(x2)+f′(x3)+…f′(xk)≥2013成立?請(qǐng)證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=
a
b
,其中向量
a
=(2cosx,1),
b
=(cosx,
3
sin2x+m).
(1)求函數(shù)f(x)的最小正周期和f(x)在[0,π]上的單調(diào)遞增區(qū)間;
(2)當(dāng)x∈[0,
π
2
]時(shí),|f(x)|<4恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)拋物線C:y2=2px(p>0)的焦點(diǎn)為F,經(jīng)過(guò)點(diǎn)F的動(dòng)直線l交拋物線C于點(diǎn)A(x1,y1),B(x2,y2)且y1y2=-4.
(1)求拋物線C的方程;
(2)若
OE
=2(
OA
+
OB
)(O為坐標(biāo)原點(diǎn)),且點(diǎn)E在拋物線C上,求△EAB的面積;
(3)若點(diǎn)M是拋物線C的準(zhǔn)線上的一點(diǎn),直線MF,MA,MB的斜率分別為k0,k1,k2
求證:當(dāng)k0為定值時(shí),k1+k2也為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量 
a
=(sinx,
3
cosx),
b
=(cosx,cosx),若函數(shù)f(x)=
a
b

(Ⅰ) 若
a
b
,求x的值;
(Ⅱ) 求函數(shù)f(x)的遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|x2+2x-8=0},B={x|x2-5x+6=0},C={x|x2-mx+m2-19=0},若B∩C≠∅,A∩C=∅,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,在四棱錐P-ABCD中,底面ABCD為正方形,側(cè)棱PA⊥底面ABCD,PA=AD=1,E、F分別為PD、AC的中點(diǎn).
(Ⅰ)求證:EF∥平面PAB;
(Ⅱ)求直線EF與平面ABE所成角的大小.

查看答案和解析>>

同步練習(xí)冊(cè)答案