12.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{3}^{x},x<0}\\{m-{x}^{2},x≥0}\end{array}\right.$,給出下列兩個命題:命題p:?m∈(-∞,0),方程f(x)=0有解.命題q:若m=$\frac{1}{9}$,則f(f(-1))=0那么,下列命題為真命題的是(  )
A.p∧qB.(¬p)∧qC.p∧(¬q)D.(¬p)∧(¬q)

分析 分別判斷出p,q的真假,從而判斷出復(fù)合命題的真假即可.

解答 解:若m<0,則m-x2<0,而3x>0,故f(x)≠0,命題p是假命題;
若m=$\frac{1}{9}$,則f(f(-1)=f($\frac{1}{3}$)=0,命題q是真命題;
故(¬p)∧q是真命題,
故選:B.

點評 本題考查了二次函數(shù)以及指數(shù)函數(shù)的性質(zhì),考查復(fù)合命題的判斷,是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.在△ABC中,a,b,c分別是角A,B,C所對的邊長,$a=2\sqrt{3}$,C=30°,$sinBsinC={cos^2}\frac{A}{2}$.則b=( 。
A.$\sqrt{3}$B.2C.$2\sqrt{2}$D.$2\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知數(shù)列{an}為等比數(shù)列,且a1=-1,a4=64.
(1)求數(shù)列{an}的通項公式;
(2)求數(shù)列{an}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.函數(shù)f(x)=2x-$\sqrt{1-x}$的值域為( 。
A.(-∞,2)B.[2,+∞)C.(2,+∞)D.(-∞,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)a,b∈R,若p:2a<2b,q:a2<b2,則p是q的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.當(dāng)曲線y=$\sqrt{4-{x}^{2}}$與直線kx-y-2k+4=0有兩個相異的交點時,實數(shù)k的取值范圍是(  )
A.(0,$\frac{3}{4}$)B.($\frac{5}{12}$,$\frac{3}{4}$]C.($\frac{3}{4}$,1]D.($\frac{3}{4}$,+∞]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)l是一條直線,α,β,γ是不同的平面,則在下列命題中,真命題的個數(shù)是( 。﹤.
①如果α⊥β,那么α內(nèi)一定存在直線平行于β
②如果α不垂直于β,那么α內(nèi)一定不存在直線垂直于β
③如果α⊥γ,β⊥γ,α∩β=l,那么l⊥γ
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.在△ABC中,b=3,c=3$\sqrt{3}$,B=30°,則a=(  )
A.6B.3C.6或3D.6或4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.中國傳統(tǒng)文化中很多內(nèi)容體現(xiàn)了數(shù)學(xué)的對稱美,如圖所示的太極圖是由黑白兩個魚形紋組成的圓形圖案,充分展現(xiàn)了相互轉(zhuǎn)化、對稱統(tǒng)一的形式美、和諧美.給出定義:能夠?qū)AO的周長和面積同時平分的函數(shù)稱為這個圓的“優(yōu)美函數(shù)”.給出下列命題:
①對于任意一個圓O,其“優(yōu)美函數(shù)”有無數(shù)個;
②函數(shù)f(x)=ln(x2+$\sqrt{{x}^{2}+1}$可以是某個圓的“優(yōu)美函數(shù)”;
③正弦函數(shù)y=sinx可以同時是無數(shù)個圓的“優(yōu)美函數(shù)”;
④函數(shù)y=f(x)是“優(yōu)美函數(shù)”的充要條件為函數(shù)y=f(x)的圖象是中心對稱圖形.
其中正確的命題是①③(寫出所有正確命題的序號)

查看答案和解析>>

同步練習(xí)冊答案