7.設(shè)a,b∈R,若p:2a<2b,q:a2<b2,則p是q的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

分析 通過舉反例可得“a2<b2”不能推出“a<b”,由“a2<b2”不能推出“a<b”,從而得出結(jié)論.

解答 解:由p:2a<2b,得到a<b不能推出“a2<b2”,如a=-1,b=1時,故充分性不成立.
由“a2<b2”不能推出“a<b”,如 22<(-3)2,不能推出2<-3,故必要性不成立.
綜上可得,“a<b”是a2<b2的既不充分也不必要條件,
故選D.

點(diǎn)評 本題主要考查充分條件、必要條件、充要條件的定義,通過給變量取特殊值,舉反例來說明某個命題不正確,是一種簡單有效的方法,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知函數(shù)f(x)=-xlnx+ax在(0,e)上是增函數(shù),函數(shù)$g(x)=|{{e^x}-a}|+\frac{a^2}{2}$,當(dāng)x∈[0,ln3]時,函數(shù)g(x)的最大值M與最小值m的差為$\frac{3}{2}$,則a=( 。
A.$\frac{5}{2}$B.2C.$\frac{3}{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.下列命題中:
①若$\overrightarrow a$與$\overrightarrow b$是共線向量,$\overrightarrow b$與$\overrightarrow c$是共線向量,則$\overrightarrow a$與$\overrightarrow c$是共線向量;
②銳角△ABC中,恒有sinA>cosB;
③若向量$\overrightarrow{a}$=(6,2)與$\overrightarrow$=(-3,k)的夾角是鈍角,則k的取值范圍是k<9;
④函數(shù)f(x)=cos(2x-$\frac{π}{3}}$)+cos(2x+$\frac{π}{6}}$)的最大值為$\sqrt{2}$;
其中正確的序號是②④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知f(x)═ax-$\frac{a}{x}$-51nx,g(x)=x2-mx+4
(1)若x=2是函數(shù)f(x)的極值點(diǎn),求a的值;
(2)當(dāng)a=2時,若?x1∈(0,1),?x2∈[1,2]都有f(x1)≥g(x2)成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知命題p:“已知f(x)為定義在R上的偶函數(shù),則f(x+1)的圖象關(guān)于直線x=-1對稱”,命題q:“若-1≤a≤1,則方程ax2+2x+a=0有實數(shù)解”,則( 。
A.“p且q”為真B.“p或q”為假C.p假q真D.p真q假

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{3}^{x},x<0}\\{m-{x}^{2},x≥0}\end{array}\right.$,給出下列兩個命題:命題p:?m∈(-∞,0),方程f(x)=0有解.命題q:若m=$\frac{1}{9}$,則f(f(-1))=0那么,下列命題為真命題的是( 。
A.p∧qB.(¬p)∧qC.p∧(¬q)D.(¬p)∧(¬q)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在△ABC中,A,B,C的對邊分別是a,b,c,2sin2C+5sin2A=7sinA•sinC,且c<2a.
(1)求證:△ABC為等腰三角形;
(2)若△ABC的面積為2$\sqrt{15}$,且sinB=$\frac{\sqrt{15}}{4}$,求BC邊上的中線長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.將函數(shù)f(x)=sinωx的圖象向右平移$\frac{π}{4}$個單位長度,所得圖象與g(x)=cosωx的圖象重合,則正數(shù)ω的最小值是6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知復(fù)數(shù)z=-2i+$\frac{1+4i}{i}$,則復(fù)數(shù)z的模為( 。
A.4B.5C.6D.7

查看答案和解析>>

同步練習(xí)冊答案