(lg
1
8
-lg125)÷81 -
1
2
 
考點:對數(shù)的運算性質(zhì)
專題:計算題
分析:根據(jù)導(dǎo)數(shù)的運算性質(zhì)進行計算即可.
解答: 解:原式=-3(lg2+lg5)÷
1
9
=-27,
故答案為-27.
點評:本題考查了導(dǎo)數(shù)的運算性質(zhì),是一道基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在2點至3點之間的某一時刻,分針與時針分別在鐘面上“2”字的兩側(cè),而且與“2”字的距離相等,這一時刻是(  )
A、2時6
3
13
B、2時7
1
13
C、2時8
5
13
D、2時9
3
13

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在圓的直徑AB的延長線上任取一點C,過點C作圓的切線CD,切點為D,∠ACD的平分線交AD于點E,則∠CED
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若非零向量
a
,
b
滿足|
a
+
b
|=|
a
-
b
|=2|
b
|,則
a
+
b
a
-
b
的夾角是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圖中拋物線y2=2x與直線y=x-4所圍成陰影部分的面積是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x∈R,則函數(shù)f(x)=
x2+x+1
-
x2-x+1
的值域是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等差數(shù)列{an}的前n項和為Sn,已知a1=7,a2為整數(shù),當(dāng)且僅當(dāng)n=4時Sn取得最大值.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=(9-an)•2n+1,求數(shù)列{bn}的前n項和為Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列幾個命題:①不等式
3
x-1
<x+1的解集為{x|x<-2,或x>2};②已知a,b均為正數(shù),且
1
a
+
4
b
=1,則a+b的最小值為9;③已知x,y均為正數(shù),且x+3y-2=0,則3x+27y+1的最小值為7;其中正確的有
 
.(以序號作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在△ABC中,D、E、F分別是BC、CA、AB的中點,O是三角形內(nèi)一點.求證:
(1)若O是△ABC的重心,則
OA
+
OB
+
OC
=0;
(2)
AD
+
BE
+
CF
=0.

查看答案和解析>>

同步練習(xí)冊答案