8.已知圓C:x2+y2-4x+3=0,
(1)求過(guò)M(3,2)點(diǎn)的圓的切線方程;
(2)直線l過(guò)點(diǎn)$N({\frac{3}{2},\frac{1}{2}})$且被圓C截得的弦長(zhǎng)最短時(shí),求直線l的方程;
(3)過(guò)點(diǎn)(1,0)的直線m與圓C交于不同的兩點(diǎn)A、B,線段AB的中點(diǎn)P的軌跡為C1,直線$y=k(x-\frac{5}{2})$與曲線C1只有一個(gè)交點(diǎn),求k的值.

分析 (1)由圓的方程求出圓心和半徑,易得點(diǎn)A在圓外,當(dāng)切線的斜率不存在時(shí),切線方程為x=3.當(dāng)切線的斜率存在時(shí),設(shè)切線的斜率為k,寫(xiě)出切線方程,利用圓心到直線的距離等于半徑,解出k,可得切線方程;
(2)當(dāng)直線l⊥CN時(shí),弦長(zhǎng)最短,可求直線l的方程;
(3)求出軌跡C1,直利用線$y=k(x-\frac{5}{2})$與曲線C1只有一個(gè)交點(diǎn),求k的值.

解答 解:(1)圓C:x2+y2-4x+3=0,即 (x-2)2+y2=1,表示以(2,0)為圓心,半徑等于1的圓.
當(dāng)切線的斜率不存在時(shí),切線方程為x=3符合題意.
當(dāng)切線的斜率存在時(shí),設(shè)切線斜率為k,則切線方程為 y-2=k(x-3),即kx-y-3k+2=0,
所以,圓心到切線的距離等于半徑,即$\frac{|-k+2|}{\sqrt{{k}^{2}+1}}$=1,解得k=$\frac{3}{4}$,此時(shí),切線為3x-4y-1=0.
綜上可得,圓的切線方程為x=3或3x-4y-1=0…(3分)
(2)當(dāng)直線l⊥CN時(shí),弦長(zhǎng)最短,此時(shí)直線的方程為x-y-1=0…(6分)
(3)設(shè)點(diǎn)P(x,y),∵點(diǎn)P為線段AB的中點(diǎn),曲線C是圓心為C(2,0),半徑r=1的圓,∴CP⊥AP,$\overrightarrow{CP}•\overrightarrow{AP}=0$,∴化簡(jiǎn)得${({x-\frac{3}{2}})^2}+{y^2}=\frac{1}{4}$…(9分)
由于點(diǎn)P在圓內(nèi),去除點(diǎn)(1,0),所以C1:${({x-\frac{3}{2}})^2}+{y^2}=\frac{1}{4}$(x≠1)…(10分)
因?yàn)橹本$y=k(x-\frac{5}{2})$與曲線C1只有一個(gè)交點(diǎn),所以圓心到直線的距離d=$\frac{|-k|}{\sqrt{{k}^{2}+1}}$=$\frac{1}{2}$或k=0,
所以$k=±\frac{{\sqrt{3}}}{3}或0$…(12分)

點(diǎn)評(píng) 本題考查求圓的切線方程的方法,考查軌跡方程,考查點(diǎn)到直線距離公式的運(yùn)用,屬于中檔題

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.從集合{1,2,3,4,5}任取一元素a,從集合{1,2,3}任取一元素b,則b>a的概率是$\frac{1}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.在△ABC中,若sin B•sin C=cos2$\frac{A}{2}$,且sin2B+sin2C=sin2A,則△ABC是(  )
A.等邊三角形B.直角三角形C.等腰三角形D.等腰直角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知函數(shù)f(x)=-Acos(ωx+ϕ)+$\sqrt{3}$Asin(ωx+ϕ)(A>0,ω>0,|ϕ|<$\frac{π}{2}$)的最大值為2,周期為π,將函數(shù)y=f(x)圖象向右平移$\frac{π}{12}$個(gè)單位得到函數(shù)y=g(x)的圖象,若函數(shù)y=g(x)是偶函數(shù),則函數(shù)f(x)的一條對(duì)稱(chēng)軸為( 。
A.x=-$\frac{π}{6}$B.x=$\frac{π}{12}$C.x=-$\frac{π}{12}$D.x=$\frac{π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),動(dòng)點(diǎn)P(x,y)與定點(diǎn)F(-1,0)的距離和它到定直線x=-2的距離之比是$\frac{\sqrt{2}}{2}$.
(1)求動(dòng)點(diǎn)P的軌跡C的方程;
(2)過(guò)F作曲線C的不垂直于y軸的弦AB,M為AB的中點(diǎn),直線OM與${C_1}:{({x-4})^2}+{y^2}=32$交于P,Q兩點(diǎn),求四邊形APBQ面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.平面直角坐標(biāo)系xOy中,角α的始邊在x軸非負(fù)半軸,終邊與單位圓交于點(diǎn)$A(\frac{3}{5},\frac{4}{5})$,將其終邊繞O點(diǎn)逆時(shí)針旋轉(zhuǎn)$\frac{3π}{4}$后與單位圓交于點(diǎn)B,則B的橫坐標(biāo)為(  )
A.$-\frac{{\sqrt{2}}}{10}$B.$-\frac{{7\sqrt{2}}}{10}$C.$-\frac{{3\sqrt{2}}}{4}$D.$-\frac{{4\sqrt{2}}}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.設(shè)f(x)是定義在R上的奇函數(shù),且對(duì)任意x∈R,都有f(x+2)=-f(x),當(dāng)0≤x≤1時(shí),f(x)=x2
(I)當(dāng)-2≤x≤0時(shí),求f(x)的解析式;
(II)設(shè)向量$\overrightarrow a=(2sinθ,1),\overrightarrow b=(9,16cosθ)$,若$\overrightarrow a,\overrightarrow b$同向,求$f(\frac{2017}{sinθ+cosθ})$的值;
(III)定義:一個(gè)函數(shù)在某區(qū)間上的最大值減去最小值的差稱(chēng)為此函數(shù)在此區(qū)間上的“界高”.
求f(x)在區(qū)間[t,t+1](-2≤t≤0)上的“界高”h(t)的解析式;在上述區(qū)間變化的過(guò)程中,“界高”h(t)的某個(gè)值h0共出現(xiàn)了四次,求h0的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.圓x2+y2-2x-8y+13=0與直線ax+y-1=0的相交所得弦長(zhǎng)為2$\sqrt{3}$,則a=( 。
A.-$\frac{4}{3}$B.-$\frac{3}{4}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知雙曲線的一條漸近線過(guò)點(diǎn)$({2,\sqrt{3}})$,且雙曲線的一個(gè)焦點(diǎn)在拋物線${x^2}=4\sqrt{7}y$的準(zhǔn)線上,則雙曲線的標(biāo)準(zhǔn)方程為( 。
A.$\frac{y^2}{3}-\frac{x^2}{4}=1$B.$\frac{y^2}{4}-\frac{x^2}{3}=1$C.$\frac{x^2}{3}-\frac{y^2}{4}=1$D.$\frac{x^2}{4}-\frac{y^2}{3}=1$

查看答案和解析>>

同步練習(xí)冊(cè)答案