4.定義:如果函數(shù)y=f(x)在區(qū)間[a,b]上存在x1,x2(a<x1<x2<b),滿足f′(x1)=$\frac{f(b)-f(a)}{b-a}$,f′(x2)=$\frac{f(b)-f(a)}{b-a}$,則稱函數(shù)y=f(x)在區(qū)間[a,b]上的一個(gè)雙中值函數(shù),已知函數(shù)f(x)=x3-x2是區(qū)間[0,a]上的雙中值函數(shù),則實(shí)數(shù)a的取值范圍是$({\frac{1}{2},1})$.

分析 根據(jù)題目給出的定義得到${f}^{'}({x}_{1})={f}^{'}({x}_{2})=\frac{f(a)-f(0)}{a}={a}^{2}-a$,即方程3x2-2x=a2-a在區(qū)間(0,a)有兩個(gè)解,利用二次函數(shù)的性質(zhì)能求出a的取值范圍.

解答 解:∵f(x)=x3-x2,∴f′(x)=3x2-2x,
∵函數(shù)f(x)=x3-x2是區(qū)間[0,a]上的雙中值函數(shù),
∴區(qū)間[0,a]上存在x1,x2(0<x1<x2<a),
滿足${f}^{'}({x}_{1})={f}^{'}({x}_{2})=\frac{f(a)-f(0)}{a}={a}^{2}-a$,
∴方程3x2-2x=a2-a在區(qū)間(0,a)有兩個(gè)不相等的解,
令g(x)=3x2-2x-a2+a,(0<x<a),
則$\left\{\begin{array}{l}{△=4-12(-{a}^{2}+a)>0}\\{g(0)=-{a}^{2}+a>0}\\{g(a)=2{a}^{2}-a>0}\end{array}\right.$,解得$\frac{1}{2}<a<1$,
∴實(shí)數(shù)a的取值范圍是($\frac{1}{2},1$).
故答案為:($\frac{1}{2},1$).

點(diǎn)評 本題考查實(shí)數(shù)的取值范圍的求法,考查導(dǎo)數(shù)的性質(zhì)及應(yīng)用等基礎(chǔ)知識,考查推理論證能力、運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想、函數(shù)與方程思想,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.觀察下列數(shù)表:
2
4,6
8,10,12,14
16,18,20,22,24,26,28,30

設(shè)2016是該表第m行的第n個(gè)數(shù),則m+n=507.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知集合A={x|x2-4x-5≤0},函數(shù)y=ln(x2-4)的定義域?yàn)锽.
(Ⅰ)求A∩B;
(Ⅱ)若C={x|x≤a-1},且A∪(∁RB)⊆C,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.如圖,平面內(nèi)有三個(gè)向量$\overrightarrow{OA}$,$\overrightarrow{OB}$,$\overrightarrow{OC}$,∠AOB=120°,∠AOC=45°,且|$\overrightarrow{OA}$|=|$\overrightarrow{OB}$|=1,|$\overrightarrow{OC}$|=2$\sqrt{3}$,若$\overrightarrow{OC}$=λ$\overrightarrow{OA}$+μ$\overrightarrow{OB}$,則λ+μ的值為$\sqrt{6}$+3$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在直角坐標(biāo)系xOy中,圓C的參數(shù)方程為$\left\{\begin{array}{l}x=2+2cosφ\\ y=2sinφ\end{array}\right.$(φ為參數(shù)),直線l的方程為x+$\sqrt{3}$y-9=0,以O(shè)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.
(1)求圓C和直線l的極坐標(biāo)方程;
(2)射線OA:θ=$\frac{π}{6}$與圓C的交點(diǎn)是O,M,與直線l的交點(diǎn)為N,求線段MN的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知曲線C:$\left\{\begin{array}{l}{x=2cosθ}\\{y=3sinθ}\end{array}\right.$,(θ為參數(shù)),在以O(shè)為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)系中,直線l的極坐標(biāo)方程2ρcosθ+ρsinθ-6=0.
(1)寫出曲線C的普通方程,直線l的直角坐標(biāo)方程;
(2)過曲線C上任意一點(diǎn)P作與l夾角為30°的直線,交l于點(diǎn)A,求|PA|的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知等差數(shù)列{an}中,a2,a2016是方程x2-2x-2=0的兩根,則S2017=( 。
A.-2017B.-1008C.1008D.2017

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知$\overrightarrow{AB},\overrightarrow{AC}$不共線,$\overrightarrow{AP}$=λ($\overrightarrow{AB}$+$\overrightarrow{AC}$))(λ∈R),則點(diǎn)P的軌跡一定過△ABC的( 。
A.重心B.內(nèi)心C.外心D.垂心

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.過原點(diǎn)O作斜率為k1(k1≠0)的直線l交拋物線Γ:y=$\frac{1}{4}$x2-1于A,B 兩點(diǎn),
(1)當(dāng)k1=1時(shí),求$\frac{1}{|OA|}$+$\frac{1}{|OB|}$的值;
(2)已知M(0,3),延長AM交拋物線Γ于C點(diǎn),延長BM交拋物線Γ于D點(diǎn).記直線CD的斜率為k2,問是否存在實(shí)數(shù)λ,都有k2=λk1成立,如果存在,請求出λ的值;如果不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案