設(shè)a∈{1, 2, 3}, b∈{2, 4, 6},則函數(shù)y=是減函數(shù)的概率為 。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
已知某幾何體的三視圖如圖所示,其中俯視圖中圓的直徑為4,該幾何體的體積為V1,直徑為4的球的體積為V2,則V1:V2等于
A.1:2 B.2:1 C.1:1 D.1:4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
過拋物線y2=4x的焦點(diǎn)F的直線交該拋物線于A, B兩點(diǎn),O為坐標(biāo)原點(diǎn)。
若|AF|=3,則△AOB的面積為
A. B. C. D.2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
設(shè)函數(shù)f(x)=sin(wx+)+sin(wx-)(w>0)的最小正周期為π,則
A.f(x)在(0, )上單調(diào)遞增 B.f(x)在(0, )上單調(diào)遞減
C.f(x)在(0, )上單調(diào)遞增 D.f(x)在(0, )上單調(diào)遞減
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
如圖所示,已知四邊形ABCD是正方形,EA⊥平面ABCD,PD∥EA,
AD=PD=2EA=2,F(xiàn), G, H分別為BP, BE, PC的中點(diǎn)。
(1)求證:平面FGH⊥平面AEB;
(2)在線段PC上是否存在一點(diǎn)M,使PB⊥平面EFM?若存在,求出線段PM的長(zhǎng);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知函數(shù);
(I)若>0,試判斷f(x)在定義域內(nèi)的單調(diào)性;
(II)若f(x)在[1,e]上的最小值為,求的值;
(III)若f(x)<x2在(1,上恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
某同學(xué)在一次研究性學(xué)習(xí)中發(fā)現(xiàn),以下五個(gè)式子的值都等于同一個(gè)常數(shù):
(1)sin213°+cos217°-sin13°cos17°;
(2)sin215°+cos215°-sin15°cos15°;
(3)sin218°+cos212°-sin18°cos12°;
(4)sin2(-18°)+cos248°-sin(-18°)cos48°;
(5)sin2(-25°)+cos255°-sin(-25°)cos55°.
(1)請(qǐng)根據(jù)(2)式求出這個(gè)常數(shù);
(2)根據(jù)(1)的計(jì)算結(jié)果,將該同學(xué)的發(fā)現(xiàn)推廣為三角恒等式,并證明你的結(jié)論.
(證明步驟盡可能詳細(xì)。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com