已知等差數(shù)列{an}的前n項和為Sn,若S10<0,S11>0,則當Sn最小時n的值是( 。
A、7B、6C、5D、4
考點:等差數(shù)列的前n項和,等差數(shù)列的性質(zhì)
專題:等差數(shù)列與等比數(shù)列
分析:由等差數(shù)列的性質(zhì)和求和公式易得a5<0,a6<0,可得差數(shù)列{an}的前5項均為負數(shù),從第6項開始為正數(shù),可得結(jié)論.
解答: 解:由等差數(shù)列的求和公式和性質(zhì)可得:
S10=
10(a1+a10)
2
=5(a1+a10)=5(a5+a6)<0,
S11
11(a1+a11)
2
=
11
2
(a1+a11)=11a6>0,
∴a5<0,a6<0,
∴差數(shù)列{an}的前5項均為負數(shù),從第6項開始為正數(shù),
∴當Sn最小時n的值為5
故選:C
點評:本題考查等差數(shù)列的求和公式和性質(zhì),屬基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

在△ABC中,已知a=3,b=2
6
,∠B=2∠A,求邊長c的值以及三角形的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

△ABC中,點A(1,1),點B(4,2),點C(-4,6).
(1)求BC邊上的中線所在直線的方程;
(2)求BC邊上的高及△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列函數(shù)中,周期為π,且在[0,
π
2
]上為減函數(shù)的是( 。
A、y=sin(2x+
π
2
B、y=cos(2x+
π
2
C、y=sin(x+
π
2
D、y=cos(x+
π
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給定集合An={1,2,3,…,n}(n∈N+),映射fAn→An滿足:①當i,j∈An,i≠j時,f(i)≠f(j);②任取m∈An,若m≥2,則有m∈{f(1),f(2),…,f(m)}.則稱映射fAn→An是一個“優(yōu)映射”.例如:用表1表示的映射fA3→A3是一個“優(yōu)映射”.
表1                          
i123
 f(i)231
表2
i1234
f(i)3
(1)已知表2表示的映射fA4→A4是一個“優(yōu)映射”,請把表2補充完整.
(2)若映射fA6→A6是“優(yōu)映射”,且方程f(i)=i的解恰有3個,則這樣的“優(yōu)映射”的個數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)復(fù)數(shù)z滿足,且(
3
-3i)z=6i,則z=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

a+2i
i
=b+i(a,b∈R),其中為虛數(shù)單位,則a+b=( 。
A、1B、2C、3D、-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}中,a1=1,且當x=
1
2
時,函數(shù)f(x)=
1
2
an•x2+(2-n-an+1)•x取得極值.
(1)若bn=2n-1•an,求數(shù)列{bn}的通項公式;
(2)求數(shù)列{an}的前n項和Sn;
(3)試證明:n>3(n∈N*)時,Sn
4n
n+1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點A(2,3),B(1,0),C(-1,0),點D、E分別在線段AB、AC上,
AD
DB
1,
AE
EC
2,且λ12=1,線段BE、CD交于點P,則點P軌跡的長度是
 

查看答案和解析>>

同步練習冊答案