如圖,在六面體ABCDEFG中,平面ABC∥平面DEFG,AD⊥平面DEFG,ED⊥DG,EF∥DG.且AB=AD=DE=DG=2,AC=EF=1.  (1)求證:BF∥平面ACGD; (2)求二面角D­CG­F的余弦值.

(1)詳見解析;(2)

解析試題分析:(1)設(shè)DG的中點為M,連接AM,F(xiàn)M.可得BF//AM;(2)做出二面角平面角,利用三角函數(shù)求.
也可以利用空間向量求解.
試題解析:方法一 (1)設(shè)DG的中點為M,連接AM,F(xiàn)M.
則由已知條件易證四邊形DEFM是平行四邊形.
∴MF∥DE,且MF=DE.∵平面ABC∥平面DEFG,
∴AB∥DE.∵AB=DE,
∴MF∥AB,且MF=AB,∴四邊形ABFM是平行四邊形.
∴BF∥AM.
又BF?平面ACGD,AM?平面ACGD,
故BF∥平面ACGD.
(2)由已知AD⊥平面DEFG,∴DE⊥AD.又DE⊥DG,
∴DE⊥平面ADGC.∵M(jìn)F∥DE,∴MF⊥平面ADGC.
在平面ADGC中,過M作MN⊥GC,垂足為N,連接NF,則∠MNF為所求二面角的平面角.
連接CM.∵平面ABC∥平面DEFG,∴AC∥DM.又AC=DM=1,所以四邊形ACMD為平行四邊形,∴CM∥AD,且CM=AD=2.
∵AD⊥平面DEFG,∴CM⊥平面DEFG,∴CM⊥DG.

在Rt△CMG中,∵CM=2,MG=1,∴MN=.
在Rt△FMN中,
∵M(jìn)F=2,MN=,∴FN=.
∴cos∠MNF=,∴二面角D­CG­F的余弦值為.
方法二 由題意可得,AD,DE,DG兩兩垂直,故可建立如圖所示的空間直角坐標(biāo)系.

則A(0,0,2),B(2,0,2),C(0,1,2),E(2,0,0),G(0,2,0),F(xiàn)(2,1,0).
(1)=(2,1,0)-(2,0,2)=(0,1,-2),=(0,2,0)-(0,1,2)=(0,1,-2),
,∴BF∥CG.又BF?平面ACGD,故BF∥平面ACGD.
(2)=(0,2,0)-(2,1,0)=(-2,1,0).設(shè)平面BCGF的法向量為n1=(x,y,z),
令y=2,則n1=(1,2,1).則平面ADGC的法向量n2=(1,0,0).
∴cos〈n1,n2〉=.
由于所求的二面角為銳二面角,∴二面角D­CG­F的余弦值為.
考點:線面平行、二面角求法.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在四棱錐P-ABCD中,底面ABCD為直角梯形,且AD∥BC,∠ABC=∠PAD=90°,側(cè)面PAD⊥底面ABCD,若PA=AB=BC=,AD=1.

(I)求證:CD⊥平面PAC;
(II)求二面角A-PD-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在四棱錐中,底面為直角梯形,、,,,的中點.

(1)求證:平面;
(2)求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,四棱錐的底面是正方形,棱底面,=1,的中點.

(1)證明平面平面; 
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在四棱錐中,底面是正方形,側(cè)面是正三角形,平面底面

(Ⅰ)如果為線段VC的中點,求證:平面;
(Ⅱ)如果正方形的邊長為2, 求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知斜三棱柱的底面是直角三角形, ,側(cè)棱與底面所成角為,點在底面上的射影落在上.

(1)求證:平面;
(2)若,且當(dāng)時,求二面角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,四棱錐的底面為矩形,,,分別是的中點,

(Ⅰ)求證:平面
(Ⅱ)求證:平面平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,、為圓柱的母線,是底面圓的直徑,、分別是的中點,

(1)證明:
(2)證明:;
(3)求四棱錐與圓柱的體積比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在底面為平行四邊形的四棱柱中,底面,,,
(1)求證:平面平面;
(2)若,求四棱錐的體積.

查看答案和解析>>

同步練習(xí)冊答案